AI triaging halved breast MRI scan times while preserving diagnostic performance, enabling efficient, adaptive imaging workflows.
Key Details
- 1Simulation study analyzed retrospective data from 863 women (1,423 MRI exams); 51 breast cancers diagnosed within 12 months.
- 2AI-directed triaging assigned about 50% of exams to an abbreviated protocol based on real-time suspicion scoring.
- 3Diagnostic performance: Sensitivity (AI triage 88.2%, conventional 86.3%); specificity (AI triage 80.8%, conventional 81.4%).
- 4Cancer detection rates were nearly identical (31.6 vs 30.9 per 1,000 exams); interval cancer rates slightly improved with AI triaging (4.2 vs 4.9 per 1,000).
- 5No cases were missed by abbreviated MRI that would have been detected by the full protocol.
- 6Study highlights potential for workflow efficiency and personalized MRI acquisition.
Why It Matters

Source
AuntMinnie
Related News

LLMs Demonstrate Strong Potential in Interventional Radiology Patient Education
DeepSeek-V3 and ChatGPT-4o excelled in accurately answering patient questions about interventional radiology procedures, suggesting LLMs' growing role in clinical communication.

Women's Uncertainty About AI in Breast Imaging May Limit Acceptance
Many women remain unclear about the role of AI in breast imaging, creating hesitation toward its adoption.

Stanford Team Introduces Real-Time AI Safety Monitoring for Radiology
Stanford researchers introduced an ensemble monitoring model to provide real-time confidence assessments for FDA-cleared radiology AI tools.