AI triaging halved breast MRI scan times while preserving diagnostic performance, enabling efficient, adaptive imaging workflows.
Key Details
- 1Simulation study analyzed retrospective data from 863 women (1,423 MRI exams); 51 breast cancers diagnosed within 12 months.
- 2AI-directed triaging assigned about 50% of exams to an abbreviated protocol based on real-time suspicion scoring.
- 3Diagnostic performance: Sensitivity (AI triage 88.2%, conventional 86.3%); specificity (AI triage 80.8%, conventional 81.4%).
- 4Cancer detection rates were nearly identical (31.6 vs 30.9 per 1,000 exams); interval cancer rates slightly improved with AI triaging (4.2 vs 4.9 per 1,000).
- 5No cases were missed by abbreviated MRI that would have been detected by the full protocol.
- 6Study highlights potential for workflow efficiency and personalized MRI acquisition.
Why It Matters

Source
AuntMinnie
Related News

Experts Urge Development of Generalist Radiology AI to Cut Costs and Improve Care
Leading scientists advocate for broader, generalist radiology AI models to overcome limitations of narrow, single-task solutions.

GE HealthCare Acquires icometrix to Bolster MRI Neurology AI
GE HealthCare is acquiring icometrix to expand its AI-powered MRI neuroimaging capabilities and integrate advanced analytics into its global product ecosystem.

General LLMs Show Promise in Detecting Critical Findings in Radiology Reports
Stanford and Mayo Clinic Arizona researchers demonstrated that LLMs like GPT-4 can categorize critical findings in radiology reports using few-shot prompting.