Sort by:
Page 1 of 13 results

Measuring the severity of knee osteoarthritis with an aberration-free fast line scanning Raman imaging system.

Jiao C, Ye J, Liao J, Li J, Liang J, He S

pubmed logopapersMay 15 2025
Osteoarthritis (OA) is a major cause of disability worldwide, with symptoms like joint pain, limited functionality, and decreased quality of life, potentially leading to deformity and irreversible damage. Chemical changes in joint tissues precede imaging alterations, making early diagnosis challenging for conventional methods like X-rays. Although Raman imaging provides detailed chemical information, it is time-consuming. This paper aims to achieve rapid osteoarthritis diagnosis and grading using a self-developed Raman imaging system combined with deep learning denoising and acceleration algorithms. Our self-developed aberration-corrected line-scanning confocal Raman imaging device acquires a line of Raman spectra (hundreds of points) per scan using a galvanometer or displacement stage, achieving spatial and spectral resolutions of 2 μm and 0.2 nm, respectively. Deep learning algorithms enhance the imaging speed by over 4 times through effective spectrum denoising and signal-to-noise ratio (SNR) improvement. By leveraging the denoising capabilities of deep learning, we are able to acquire high-quality Raman spectral data with a reduced integration time, thereby accelerating the imaging process. Experiments on the tibial plateau of osteoarthritis patients compared three excitation wavelengths (532, 671, and 785 nm), with 671 nm chosen for optimal SNR and minimal fluorescence. Machine learning algorithms achieved a 98 % accuracy in distinguishing articular from calcified cartilage and a 97 % accuracy in differentiating osteoarthritis grades I to IV. Our fast Raman imaging system, combining an aberration-corrected line-scanning confocal Raman imager with deep learning denoising, offers improved imaging speed and enhanced spectral and spatial resolutions. It enables rapid, label-free detection of osteoarthritis severity and can identify early compositional changes before clinical imaging, allowing precise grading and tailored treatment, thus advancing orthopedic diagnostics and improving patient outcomes.

Automated Microbubble Discrimination in Ultrasound Localization Microscopy by Vision Transformer.

Wang R, Lee WN

pubmed logopapersMay 15 2025
Ultrasound localization microscopy (ULM) has revolutionized microvascular imaging by breaking the acoustic diffraction limit. However, different ULM workflows depend heavily on distinct prior knowledge, such as the impulse response and empirical selection of parameters (e.g., the number of microbubbles (MBs) per frame M), or the consistency of training-test dataset in deep learning (DL)-based studies. We hereby propose a general ULM pipeline that reduces priors. Our approach leverages a DL model that simultaneously distills microbubble signals and reduces speckle from every frame without estimating the impulse response and M. Our method features an efficient channel attention vision transformer (ViT) and a progressive learning strategy, enabling it to learn global information through training on progressively increasing patch sizes. Ample synthetic data were generated using the k-Wave toolbox to simulate various MB patterns, thus overcoming the deficiency of labeled data. The ViT output was further processed by a standard radial symmetry method for sub-pixel localization. Our method performed well on model-unseen public datasets: one in silico dataset with ground truth and four in vivo datasets of mouse tumor, rat brain, rat brain bolus, and rat kidney. Our pipeline outperformed conventional ULM, achieving higher positive predictive values (precision in DL, 0.88-0.41 vs. 0.83-0.16) and improved accuracy (root-mean-square errors: 0.25-0.14 λ vs. 0.31-0.13 λ) across a range of signal-to-noise ratios from 60 dB to 10 dB. Our model could detect more vessels in diverse in vivo datasets while achieving comparable resolutions to the standard method. The proposed ViT-based model, seamlessly integrated with state-of-the-art downstream ULM steps, improved the overall ULM performance with no priors.

Deep Learning-accelerated MRI in Body and Chest.

Rajamohan N, Bagga B, Bansal B, Ginocchio L, Gupta A, Chandarana H

pubmed logopapersMay 13 2025
Deep learning reconstruction (DLR) provides an elegant solution for MR acceleration while preserving image quality. This advancement is crucial for body imaging, which is frequently marred by the increased likelihood of motion-related artifacts. Multiple vendor-specific models focusing on T2, T1, and diffusion-weighted imaging have been developed for the abdomen, pelvis, and chest, with the liver and prostate being the most well-studied organ systems. Variational networks with supervised DL models, including data consistency layers and regularizers, are the most common DLR methods. The common theme for all single-center studies on this subject has been noninferior or superior image quality metrics and lesion conspicuity to conventional sequences despite significant acquisition time reduction. DLR also provides a potential for denoising, artifact reduction, increased resolution, and increased signal-noise ratio (SNR) and contrast-to-noise ratio (CNR) that can be balanced with acceleration benefits depending on the imaged organ system. Some specific challenges faced by DLR include slightly reduced lesion detection, cardiac motion-related signal loss, regional SNR variations, and variabilities in ADC measurements as reported in different organ systems. Continued investigations with large-scale multicenter prospective clinical validation of DLR to document generalizability and demonstrate noninferior diagnostic accuracy with histopathologic correlation are the need of the hour. The creation of vendor-neutral solutions, open data sharing, and diversifying training data sets are also critical to strengthening model robustness.
Page 1 of 13 results
Show
per page
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.