Secure and fault tolerant cloud based framework for medical image storage and retrieval in a distributed environment.
Authors
Affiliations (2)
Affiliations (2)
- Security Research Lab, Department of Computer Science and Engineering, College of Engineering Guindy, Anna University, Chennai, 600025, India. [email protected].
- Security Research Lab, Department of Computer Science and Engineering, College of Engineering Guindy, Anna University, Chennai, 600025, India.
Abstract
In the evolving field of healthcare, centralized cloud-based medical image retrieval faces challenges related to security, availability, and adversarial threats. Existing deep learning-based solutions improve retrieval but remain vulnerable to adversarial attacks and quantum threats, necessitating a shift to more secure distributed cloud solutions. This article proposes SFMedIR, a secure and fault tolerant medical image retrieval framework that contains an adversarial attack-resistant federated learning for hashcode generation, utilizing a ConvNeXt-based model to improve accuracy and generalizability. The framework integrates quantum-chaos-based encryption for security, dynamic threshold-based shadow storage for fault tolerance, and a distributed cloud architecture to mitigate single points of failure. Unlike conventional methods, this approach significantly improves security and availability in cloud-based medical image retrieval systems, providing a resilient and efficient solution for healthcare applications. The framework is validated on Brain MRI and Kidney CT datasets, achieving a 60-70% improvement in retrieval accuracy for adversarial queries and an overall 90% retrieval accuracy, outperforming existing models by 5-10%. The results demonstrate superior performance in terms of both security and retrieval efficiency, making this framework a valuable contribution to the future of secure medical image management.