Sort by:
Page 1 of 217 results
Next

Radiologist-AI Collaboration for Ischemia Diagnosis in Small Bowel Obstruction: Multicentric Development and External Validation of a Multimodal Deep Learning Model

Vanderbecq, Q., Xia, W. F., Chouzenoux, E., Pesquet, J.-c., Zins, M., Wagner, M.

medrxiv logopreprintSep 8 2025
PurposeTo develop and externally validate a multimodal AI model for detecting ischaemia complicating small-bowel obstruction (SBO). MethodsWe combined 3D CT data with routine laboratory markers (C-reactive protein, neutrophil count) and, optionally, radiology report text. From two centers, 1,350 CT examinations were curated; 771 confirmed SBO scans were used for model development with patient-level splits. Ischemia labels were defined by surgical confirmation within 24 hours of imaging. Models (MViT, ResNet-101, DaViT) were trained as unimodal and multimodal variants. External testing was used for 66 independent cases from a third center. Two radiologists (attending, resident) read the test set with and without AI assistance. Performance was assessed using AUC, sensitivity, specificity, and 95% bootstrap confidence intervals; predictions included a confidence score. ResultsThe image-plus-laboratory model performed best on external testing (AUC 0.69 [0.59-0.79], sensitivity 0.89 [0.76-1.00], and specificity 0.44 [0.35-0.54]). Adding report text improved internal validation but did not generalize externally; image+text and full multimodal variants did not exceed image+laboratory performance. Without AI, the attending outperformed the resident (AUC 0.745 [0.617-0.845] vs 0.706 [0.581-0.818]); with AI, both improved, attending 0.752 [0.637-0.853] and resident 0.752 [0.629-0.867], rising to 0.750 [0.631-0.839] and 0.773 [0.657-0.867] with confidence display; differences were not statistically significant. ConclusionA multimodal AI that combines CT images with routine laboratory markers outperforms single-modality approaches and boosts radiologist readers performance notably junior, supporting earlier, more consistent decisions within the first 24 hours. Key PointsA multimodal artificial intelligence (AI) model that combines CT images with laboratory markers detected ischemia in small-bowel obstruction with AUC 0.69 (95% CI 0.59-0.79) and sensitivity 0.89 (0.76-1.00) on external testing, outperforming single-modality models. Adding report text did not generalize across sites: the image+text model fell from AUC 0.82 (internal) to 0.53 (external), and adding text to image+biology left external AUC unchanged (0.69) with similar specificity (0.43-0.44). With AI assistance both junior and senior readers improved; the juniors AUC rose from 0.71 to 0.77, reaching senior-level performance. Summary StatementA multicentric AI model combining CT and routine laboratory data (CRP and neutrophilia) improved radiologists detection of ischemia in small-bowel obstruction. This tool supports earlier decision-making within the first 24 hours.

The Effect of Image Resolution on the Performance of Deep Learning Algorithms in Detecting Calcaneus Fractures on X-Ray

Yee, N. J., Taseh, A., Ghandour, S., Sirls, E., Halai, M., Whyne, C., DiGiovanni, C. W., Kwon, J. Y., Ashkani-Esfahani, S. J.

medrxiv logopreprintSep 7 2025
PurposeTo evaluate convolutional neural network (CNN) model training strategies that optimize the performance of calcaneus fracture detection on radiographs at different image resolutions. Materials and MethodsThis retrospective study included foot radiographs from a single hospital between 2015 and 2022 for a total of 1,775 x-ray series (551 fractures; 1,224 without) and was split into training (70%), validation (15%), and testing (15%). ImageNet pre-trained ResNet models were fine-tuned on the dataset. Three training strategies were evaluated: 1) single size: trained exclusively on 128x128, 256x256, 512x512, 640x640, or 900x900 radiographs (5 model sets); 2) curriculum learning: trained exclusively on 128x128 radiographs then exclusively on 256x256, then 512x512, then 640x640, and finally on 900x900 (5 model sets); and 3) multi-scale augmentation: trained on x-ray images resized along continuous dimensions between 128x128 to 900x900 (1 model set). Inference time and training time were compared. ResultsMulti-scale augmentation trained models achieved the highest average area under the Receiver Operating Characteristic curve of 0.938 [95% CI: 0.936 - 0.939] for a single model across image resolutions compared to the other strategies without prolonging training or inference time. Using the optimal model sets, curriculum learning had the highest sensitivity on in-distribution low-resolution images (85.4% to 90.1%) and on out-of-distribution high-resolution images (78.2% to 89.2%). However, curriculum learning models took significantly longer to train (11.8 [IQR: 11.1-16.4] hours; P<.001). ConclusioWhile 512x512 images worked well for fracture identification, curriculum learning and multi-scale augmentation training strategies algorithmically improved model robustness towards different image resolutions without requiring additional annotated data. Summary statementDifferent deep learning training strategies affect performance in detecting calcaneus fractures on radiographs across in- and out-of-distribution image resolutions, with a multi-scale augmentation strategy conferring the greatest overall performance improvement in a single model. Key pointsO_LITraining strategies addressing differences in radiograph image resolution (or pixel dimensions) could improve deep learning performance. C_LIO_LIThe highest average performance across different image resolutions in a single model was achieved by multi-scale augmentation, where the sampled training dataset is uniformly resized between square resolutions of 128x128 to 900x900. C_LIO_LICompared to model training on a single image resolution, sequentially training on increasingly higher resolution images up to 900x900 (i.e., curriculum learning) resulted in higher fracture detection performance on images resolutions between 128x128 and 2048x2048. C_LI

Automated Deep Learning-Based Detection of Early Atherosclerotic Plaques in Carotid Ultrasound Imaging

Omarov, M., Zhang, L., Doroodgar Jorshery, S., Malik, R., Das, B., Bellomo, T. R., Mansmann, U., Menten, M. J., Natarajan, P., Dichgans, M., Kalic, M., Raghu, V. K., Berger, K., Anderson, C. D., Georgakis, M. K.

medrxiv logopreprintSep 3 2025
BackgroundCarotid plaque presence is associated with cardiovascular risk, even among asymptomatic individuals. While deep learning has shown promise for carotid plaque phenotyping in patients with advanced atherosclerosis, its application in population-based settings of asymptomatic individuals remains unexplored. MethodsWe developed a YOLOv8-based model for plaque detection using carotid ultrasound images from 19,499 participants of the population-based UK Biobank (UKB) and fine-tuned it for external validation in the BiDirect study (N = 2,105). Cox regression was used to estimate the impact of plaque presence and count on major cardiovascular events. To explore the genetic architecture of carotid atherosclerosis, we conducted a genome-wide association study (GWAS) meta-analysis of the UKB and CHARGE cohorts. Mendelian randomization (MR) assessed the effect of genetic predisposition to vascular risk factors on carotid atherosclerosis. ResultsOur model demonstrated high performance with accuracy, sensitivity, and specificity exceeding 85%, enabling identification of carotid plaques in 45% of the UKB population (aged 47-83 years). In the external BiDirect cohort, a fine-tuned model achieved 86% accuracy, 78% sensitivity, and 90% specificity. Plaque presence and count were associated with risk of major adverse cardiovascular events (MACE) over a follow-up of up to seven years, improving risk reclassification beyond the Pooled Cohort Equations. A GWAS meta-analysis of carotid plaques uncovered two novel genomic loci, with downstream analyses implicating targets of investigational drugs in advanced clinical development. Observational and MR analyses showed associations between smoking, LDL cholesterol, hypertension, and odds of carotid atherosclerosis. ConclusionsOur model offers a scalable solution for early carotid plaque detection, potentially enabling automated screening in asymptomatic individuals and improving plaque phenotyping in population-based cohorts. This approach could advance large-scale atherosclerosis research. O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=131 SRC="FIGDIR/small/24315675v2_ufig1.gif" ALT="Figure 1"> View larger version (33K): [email protected]@27a04corg.highwire.dtl.DTLVardef@18cef18org.highwire.dtl.DTLVardef@1a53d8f_HPS_FORMAT_FIGEXP M_FIG O_FLOATNOGRAPHICAL ABSTRACT.C_FLOATNO ASCVD - Atherosclerotic Cardiovascular Disease, CVD - Cardiovascular disease, PCE - Pooled Cohort Equations, TP- true positive, FN - False Negative, FP - False Positive, TN - True Negative, GWAS - Genome-Wide Association Study. C_FIG CLINICAL PERSPECTIVECarotid ultrasound is a well-established method for assessing subclinical atherosclerosis with potential to improve cardiovascular risk assessment in asymptomatic individuals. Deep learning could automate plaque screening and enable processing of large imaging datasets, reducing the need for manual annotation. Integrating such large-scale carotid ultrasound datasets with clinical, genetic, and other relevant data can advance cardiovascular research. Prior studies applying deep learning to carotid ultrasound have focused on technical tasks-plaque classification, segmentation, and characterization-in small sample sizes of patients with advanced atherosclerosis. However, they did not assess the potential of deep learning in detecting plaques in asymptomatic individuals at the population level. We developed an efficient deep learning model for the automated detection and quantification of early carotid plaques in ultrasound imaging, primarily in asymptomatic individuals. The model demonstrated high accuracy and external validity across population-based cohort studies. Predicted plaque prevalence aligned with known cardiovascular risk factors. Importantly, predicted plaque presence and count were associated with future cardiovascular events and improved reclassification of asymptomatic individuals into clinically meaningful risk categories. Integrating our model predictions with genetic data identified two novel loci associated with carotid plaque presence--both previously linked to cardiovascular disease--highlighting the models potential for population-scale atherosclerosis research. Our model provides a scalable solution for automated carotid plaque phenotyping in ultrasound images at the population level. These findings support its use for automated screening in asymptomatic individuals and for streamlining plaque phenotyping in large cohorts, thereby advancing research on subclinical atherosclerosis in the general population.

The African Breast Imaging Dataset for Equitable Cancer Care: Protocol for an Open Mammogram and Ultrasound Breast Cancer Detection Dataset

Musinguzi, D., Katumba, A., Kawooya, M. G., Malumba, R., Nakatumba-Nabende, J., Achuka, S. A., Adewole, M., Anazodo, U.

medrxiv logopreprintAug 28 2025
IntroductionBreast cancer is one of the most common cancers globally. Its incidence in Africa has increased sharply, surpassing that in high-income countries. Mortality remains high due to late-stage diagnosis, when treatment is less effetive. We propose the first open, longitudinal breast imaging dataset from Africa comprising point-of-care ultrasound scans, mammograms, biopsy pathology, and clinical profiles to support early detection using machine learning. Methods and AnalysisWe will engage women through community outreach and train them in self-examination. Those with suspected lesions, particularly with a family history of breast cancer, will be invited to participate. A total of 100 women will undergo baseline assessment at medical centers, including clinical exams, blood tests, and mammograms. Follow-up point-of-care ultrasound scans and clinical data will be collected at 3 and 6 months, with final assessments at 9 months including mammograms. Ethics and DisseminationThe study has been approved by the Institutional Review Boards at ECUREI and the MAI Lab. Findings will be disseminated through peer-reviewed journals and scientific conferences.

Automated biometry for assessing cephalopelvic disproportion in 3D 0.55T fetal MRI at term

Uus, A., Bansal, S., Gerek, Y., Waheed, H., Neves Silva, S., Aviles Verdera, J., Kyriakopoulou, V., Betti, L., Jaufuraully, S., Hajnal, J. V., Siasakos, D., David, A., Chandiramani, M., Hutter, J., Story, L., Rutherford, M.

medrxiv logopreprintAug 21 2025
Fetal MRI offers detailed three-dimensional visualisation of both fetal and maternal pelvic anatomy, allowing for assessment of the risk of cephalopelvic disproportion and obstructed labour. However, conventional measurements of fetal and pelvic proportions and their relative positioning are typically performed manually in 2D, making them time-consuming, subject to inter-observer variability, and rarely integrated into routine clinical workflows. In this work, we present the first fully automated pipeline for pelvic and fetal head biometry in T2-weighted fetal MRI at late gestation. The method employs deep learning-based localisation of anatomical landmarks in 3D reconstructed MRI images, followed by computation of 12 standard linear and circumference measurements commonly used in the assessment of cephalopelvic disproportion. Landmark detection is based on 3D UNet models within MONAI framework, trained on 57 semi-manually annotated datasets. The full pipeline is quantitatively validated on 10 test cases. Furthermore, we demonstrate its clinical feasibility and relevance by applying it to 206 fetal MRI scans (36-40 weeks gestation) from the MiBirth study, which investigates prediction of mode of delivery using low field MRI.

Deep learning-based identification of necrosis and microvascular proliferation in adult diffuse gliomas from whole-slide images

Guo, Y., Huang, H., Liu, X., Zou, W., Qiu, F., Liu, Y., Chai, R., Jiang, T., Wang, J.

medrxiv logopreprintAug 16 2025
For adult diffuse gliomas (ADGs), most grading can be achieved through molecular subtyping, retaining only two key histopathological features for high-grade glioma (HGG): necrosis (NEC) and microvascular proliferation (MVP). We developed a deep learning (DL) framework to automatically identify and characterize these features. We trained patch-level models to detect and quantify NEC and MVP using a dataset that employed active learning, incorporating patches from 621 whole-slide images (WSIs) from the Chinese Glioma Genome Atlas (CGGA). Utilizing trained patch-level models, we effectively integrated the predicted outcomes and positions of individual patches within WSIs from The Cancer Genome Atlas (TCGA) cohort to form datasets. Subsequently, we introduced a patient-level model, named PLNet (Probability Localization Network), which was trained on these datasets to facilitate patient diagnosis. We also explored the subtypes of NEC and MVP based on the features extracted from patch-level models with clustering process applied on all positive patches. The patient-level models demonstrated exceptional performance, achieving an AUC of 0.9968, 0.9995 and AUPRC of 0.9788, 0.9860 for NEC and MVP, respectively. Compared to pathological reports, our patient-level models achieved the accuracy of 88.05% for NEC and 90.20% for MVP, along with a sensitivity of 73.68% and 77%. When sensitivity was set at 80%, the accuracy for NEC reached 79.28% and for MVP reached 77.55%. DL models enabled more efficient and accurate histopathological image analysis which will aid traditional glioma diagnosis. Clustering-based analyses utilizing features extracted from patch-level models could further investigate the subtypes of NEC and MVP.

Equivariant Spatiotemporal Transformers with MDL-Guided Feature Selection for Malignancy Detection in Dynamic PET

Dadashkarimi, M.

medrxiv logopreprintAug 6 2025
Dynamic Positron Emission Tomography (PET) scans offer rich spatiotemporal data for detecting malignancies, but their high-dimensionality and noise pose significant challenges. We introduce a novel framework, the Equivariant Spatiotemporal Transformer with MDL-Guided Feature Selection (EST-MDL), which integrates group-theoretic symmetries, Kolmogorov complexity, and Minimum Description Length (MDL) principles. By enforcing spatial and temporal symmetries (e.g., translations and rotations) and leveraging MDL for robust feature selection, our model achieves improved generalization and interpretability. Evaluated on three realworld PET datasets--LUNG-PET, BRAIN-PET, and BREAST-PET--our approach achieves AUCs of 0.94, 0.92, and 0.95, respectively, outperforming CNNs, Vision Transformers (ViTs), and Graph Neural Networks (GNNs) in AUC, sensitivity, specificity, and computational efficiency. This framework offers a robust, interpretable solution for malignancy detection in clinical settings.

BrainSignsNET: A Deep Learning Model for 3D Anatomical Landmark Detection in the Human Brain Imaging

shirzadeh barough, s., Ventura, C., Bilgel, M., Albert, M., Miller, M. I., Moghekar, A.

medrxiv logopreprintAug 5 2025
Accurate detection of anatomical landmarks in brain Magnetic Resonance Imaging (MRI) scans is essential for reliable spatial normalization, image alignment, and quantitative neuroimaging analyses. In this study, we introduce BrainSignsNET, a deep learning framework designed for robust three-dimensional (3D) landmark detection. Our approach leverages a multi-task 3D convolutional neural network that integrates an attention decoder branch with a multi-class decoder branch to generate precise 3D heatmaps, from which landmark coordinates are extracted. The model was trained and internally validated on T1-weighted Magnetization-Prepared Rapid Gradient-Echo (MPRAGE) scans from the Alzheimers Disease Neuroimaging Initiative (ADNI), the Baltimore Longitudinal Study of Aging (BLSA), and the Biomarkers of Cognitive Decline in Adults at Risk for AD (BIOCARD) datasets and externally validated on a clinical dataset from the Johns Hopkins Hydrocephalus Clinic. The study encompassed 14,472 scans from 6,299 participants, representing a diverse demographic profile with a significant proportion of older adult participants, particularly those over 70 years of age. Extensive preprocessing and data augmentation strategies, including traditional MRI corrections and tailored 3D transformations, ensured data consistency and improved model generalizability. Performance metrics demonstrated that on internal validation BrainSignsNET achieved an overall mean Euclidean distance of 2.32 {+/-} 0.41 mm and 94.8% of landmarks localized within their anatomically defined 3D volumes in the external validation dataset. This improvement in accurate anatomical landmark detection on brain MRI scans should benefit many imaging tasks, including registration, alignment, and quantitative analyses.

Detecting Fifth Metatarsal Fractures on Radiographs through the Lens of Smartphones: A FIXUS AI Algorithm

Taseh, A., Shah, A., Eftekhari, M., Flaherty, A., Ebrahimi, A., Jones, S., Nukala, V., Nazarian, A., Waryasz, G., Ashkani-Esfahani, S.

medrxiv logopreprintJul 18 2025
BackgroundFifth metatarsal (5MT) fractures are common but challenging to diagnose, particularly with limited expertise or subtle fractures. Deep learning shows promise but faces limitations due to image quality requirements. This study develops a deep learning model to detect 5MT fractures from smartphone-captured radiograph images, enhancing accessibility of diagnostic tools. MethodsA retrospective study included patients aged >18 with 5MT fractures (n=1240) and controls (n=1224). Radiographs (AP, oblique, lateral) from Electronic Health Records (EHR) were obtained and photographed using a smartphone, creating a new dataset (SP). Models using ResNet 152V2 were trained on EHR, SP, and combined datasets, then evaluated on a separate smartphone test dataset (SP-test). ResultsOn validation, the SP model achieved optimal performance (AUROC: 0.99). On the SP-test dataset, the EHR models performance decreased (AUROC: 0.83), whereas SP and combined models maintained high performance (AUROC: 0.99). ConclusionsSmartphone-specific deep learning models effectively detect 5MT fractures, suggesting their practical utility in resource-limited settings.

Automated Detection of Lacunes in Brain MR Images Using SAM with Robust Prompts via Self-Distillation and Anatomy-Informed Priors

Deepika, P., Shanker, G., Narayanan, R., Sundaresan, V.

medrxiv logopreprintJul 10 2025
Lacunes, which are small fluid-filled cavities in the brain, are signs of cerebral small vessel disease and have been clinically associated with various neurodegenerative and cerebrovascular diseases. Hence, accurate detection of lacunes is crucial and is one of the initial steps for the precise diagnosis of these diseases. However, developing a robust and consistently reliable method for detecting lacunes is challenging because of the heterogeneity in their appearance, contrast, shape, and size. To address the above challenges, in this study, we propose a lacune detection method using the Segment Anything Model (SAM), guided by point prompts from a candidate prompt generator. The prompt generator initially detects potential lacunes with a high sensitivity using a composite loss function. The SAM model selects true lacunes by delineating their characteristics from mimics such as the sulcus and enlarged perivascular spaces, imitating the clinicians strategy of examining the potential lacunes along all three axes. False positives were further reduced by adaptive thresholds based on the region-wise prevalence of lacunes. We evaluated our method on two diverse, multi-centric MRI datasets, VALDO and ISLES, comprising only FLAIR sequences. Despite diverse imaging conditions and significant variations in slice thickness (0.5-6 mm), our method achieved sensitivities of 84% and 92%, with average false positive rates of 0.05 and 0.06 per slice in ISLES and VALDO datasets respectively. The proposed method outperformed the state-of-the-art methods, demonstrating its effectiveness in lacune detection and quantification.
Page 1 of 217 results
Show
per page
12»

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.