Sort by:
Page 1 of 768 results
Next

Improving discriminative ability in mammographic microcalcification classification using deep learning: a novel double transfer learning approach validated with an explainable artificial intelligence technique

Arlan, K., Bjornstrom, M., Makela, T., Meretoja, T. J., Hukkinen, K.

medrxiv logopreprintAug 11 2025
BackgroundBreast microcalcification diagnostics are challenging due to their subtle presentation, overlapping with benign findings, and high inter-reader variability, often leading to unnecessary biopsies. While deep learning (DL) models - particularly deep convolutional neural networks (DCNNs) - have shown potential to improve diagnostic accuracy, their clinical application remains limited by the need for large annotated datasets and the "black box" nature of their decision-making. PurposeTo develop and validate a deep learning model (DCNN) using a double transfer learning (d-TL) strategy for classifying suspected mammographic microcalcifications, with explainable AI (XAI) techniques to support model interpretability. Material and methodsA retrospective dataset of 396 annotated regions of interest (ROIs) from full-field digital mammography (FFDM) images of 194 patients who underwent stereotactic vacuum-assisted biopsy at the Womens Hospital radiological department, Helsinki University Hospital, was collected. The dataset was randomly split into training and test sets (24% test set, balanced for benign and malignant cases). A ResNeXt-based DCNN was developed using a d-TL approach: first pretrained on ImageNet, then adapted using an intermediate mammography dataset before fine-tuning on the target microcalcification data. Saliency maps were generated using Gradient-weighted Class Activation Mapping (Grad-CAM) to evaluate the visual relevance of model predictions. Diagnostic performance was compared to a radiologists BI-RADS-based assessment, using final histopathology as the reference standard. ResultsThe ensemble DCNN achieved an area under the ROC curve (AUC) of 0.76, with 65% sensitivity, 83% specificity, 79% positive predictive value (PPV), and 70% accuracy. The radiologist achieved an AUC of 0.65 with 100% sensitivity but lower specificity (30%) and PPV (59%). Grad-CAM visualizations showed consistent activation of the correct ROIs, even in misclassified cases where confidence scores fell below the threshold. ConclusionThe DCNN model utilizing d-TL achieved performance comparable to radiologists, with higher specificity and PPV than BI-RADS. The approach addresses data limitation issues and may help reduce additional imaging and unnecessary biopsies.

Explainable Cryobiopsy AI Model, CRAI, to Predict Disease Progression for Transbronchial Lung Cryobiopsies with Interstitial Pneumonia

Uegami, W., Okoshi, E. N., Lami, K., Nei, Y., Ozasa, M., Kataoka, K., Kitamura, Y., Kohashi, Y., Cooper, L. A. D., Sakanashi, H., Saito, Y., Kondoh, Y., the study group on CRYOSOLUTION,, Fukuoka, J.

medrxiv logopreprintAug 8 2025
BackgroundInterstitial lung disease (ILD) encompasses diverse pulmonary disorders with varied prognoses. Current pathological diagnoses suffer from inter-observer variability,necessitating more standardized approaches. We developed an ensemble model AI for cryobiopsy, CRAI, an artificial intelligence model to analyze transbronchial lung cryobiopsy (TBLC) specimens and predict patient outcomes. MethodsWe developed an explainable AI model, CRAI, to analyze TBLC. CRAI comprises seven modules for detecting histological features, generating 19 pathologically significant findings. A downstream XGBoost classifier was developed to predict disease progression using these findings. The models performance was evaluated using respiratory function changes and survival analysis in cross-validation and external test cohorts. FindingsIn the internal cross-validation (135 cases), the model predicted 105 cases without disease progression and 30 with disease progression. The annual {Delta}%FVC was -1.293 in the non-progressive group versus -5.198 in the progressive group, outperforming most pathologists diagnoses. In the external test cohort (48 cases), the model predicted 38 non-progressive and 10 progressive cases. Survival analysis demonstrated significantly shorter survival times in the progressive group (p=0.034). InterpretationCRAI provides a comprehensive, interpretable approach to analyzing TBLC specimens, offering potential for standardizing ILD diagnosis and predicting disease progression. The model could facilitate early identification of progressive cases and guide personalized therapeutic interventions. FundingNew Energy and Industrial Technology Development Organization (NEDO) and Japanese Ministry of Health, Labor, and Welfare.

Postmortem Validation of Quantitative MRI for White Matter Hyperintensities in Alzheimer's Disease

Mojtabai, M., Kumar, R., Honnorat, N., Li, K., Wang, D., Li, J., Lee, R. F., Richardson, T. E., Cavazos, J. E., Bouhrara, M., Toledo, J. B., Heckbert, S., Flanagan, M. E., Bieniek, K. F., Walker, J. M., Seshadri, S., Habes, M.

medrxiv logopreprintAug 8 2025
White matter hyperintensities (WMH) are frequently observed on MRI in aging and Alzheimers disease (AD), yet their microstructural pathology remains poorly characterized. Conventional MRI sequences provide limited information to describe the tissue abnormalities underlying WMH, while histopathology--the gold standard--can only be applied postmortem. Quantitative MRI (qMRI) offers promising non-invasive alternatives to postmortem histopathology, but lacks histological validation of these metrics in AD. In this study, we examined the relationship between MRI metrics and histopathology in postmortem brain scans from eight donors with AD from the South Texas Alzheimers Disease Research Center. Regions of interest are delineated by aligning MRI-identified WMH in the brain donor scans with postmortem histological sections. Histopathological features, including myelin integrity, tissue vacuolation, and gliosis, are quantified within these regions using machine learning. We report the correlations between these histopathological measures and two qMRI metrics: T2 and absolute myelin water signal (aMWS) maps, as well as conventional T1w/T2w MRI. The results derived from aMWS and T2 mapping indicate a strong association between WMH, myelin loss, and increased tissue vacuolation. Bland-Altman analyses indicated that T2 mapping showed more consistent agreement with histopathology, whereas the derived aMWS demonstrated signs of systematic bias. T1w/T2w values exhibited weaker associations with histological alterations. Additionally, we observed distinct patterns of gliosis in periventricular and subcortical WMH. Our study presents one of the first histopathological validations of qMRI in AD, confirming that aMWS and T2 mapping are robust, non-invasive biomarkers that offer promising ways to monitor white matter pathology in neurodegenerative disorders.

Longitudinal development of sex differences in the limbic system is associated with age, puberty and mental health

Matte Bon, G., Walther, J., Comasco, E., Derntl, B., Kaufmann, T.

medrxiv logopreprintAug 7 2025
Sex differences in mental health become more evident across adolescence, with a two-fold increase of prevalence of mood disorders in females compared to males. The brain underpinnings remain understudied. Here, we investigated the role of age, puberty and mental health in determining the longitudinal development of sex differences in brain structure. We captured sex differences in limbic and non-limbic structures using machine learning models trained in cross-sectional brain imaging data of 1132 youths, yielding limbic and non-limbic estimates of brain sex. Applied to two independent longitudinal samples (total: 8184 youths), our models revealed pronounced sex differences in brain structure with increasing age. For females, brain sex was sensitive to pubertal development (menarche) over time and, for limbic structures, to mood-related mental health. Our findings highlight the limbic system as a key contributor to the development of sex differences in the brain and the potential of machine learning models for brain sex classification to investigate sex-specific processes relevant to mental health.

Stacked CNN Architectures for Robust Brain Tumor MRI Classification

Rahi, A.

medrxiv logopreprintAug 7 2025
Brain tumor classification using MRI scans is crucial for early diagnosis and treatment planning. In this study, we first train a single Convolutional Neural Network (CNN) based on VGG16 [1], achieving a strong standalone test accuracy of 99.24% on a balanced dataset of 7,023 MRI images across four classes: glioma, meningioma, pituitary, and no tumor. To further improve classification performance, we implement three ensemble strategies: stacking, soft voting, and XGBoost-based ensembling [4], each trained on individually fine-tuned models. These ensemble methods significantly enhance prediction accuracy, with XGBoost achieving a perfect 100% accuracy, and voting reaching 99.54%. Evaluation metrics such as precision, recall, and F1-score confirm the robustness of the approach. This work demonstrates the power of combining fine-tuned deep learning models [5] for highly reliable brain tumor classification enhance prediction accuracy, with XGBoost achieving a perfect 100% accuracy, and voting reaching 99.54%. Evaluation metrics such as precision, recall, and F1-score confirm the robustness of the approach. This work demonstrates the power of combining fine-tuned deep learning models for highly reliable brain tumor classification.

CAPoxy: a feasibility study to investigate multispectral imaging in nailfold capillaroscopy

Taylor-Williams, M., Khalil, I., Manning, J., Dinsdale, G., Berks, M., Porcu, L., Wilkinson, S., Bohndiek, S., Murray, A.

medrxiv logopreprintAug 5 2025
BackgroundNailfold capillaroscopy enables visualisation of structural abnormalities in the microvasculature of patients with systemic sclerosis (SSc). The objective of this feasibility study was to determine whether multispectral imaging could provide functional assessment (differences in haemoglobin concentration or oxygenation) of capillaries to aid discrimination between healthy controls and patients with SSc. MSI of nailfold capillaries visualizes the smallest blood vessels and the impact of SSc on angiogenesis and their deformation, making it suitable for evaluating oxygenation-sensitive imaging techniques. Imaging of the nailfold capillaries offers tissue-specific oxygenation information, unlike pulse oximetry, which measures arterial blood oxygenation as a single-point measurement. MethodsThe CAPoxy study was a single-centre, cross-sectional, feasibility study of nailfold capillary multispectral imaging, comparing a cohort of patients with SSc to controls. A nine-band multispectral camera was used to image 22 individuals (10 patients with SSc and 12 controls). Linear mixed-effects models and summary statistics were used to compare the different regions of the nailfold (capillaries, surrounding edges, and outside area) between SSc and controls. A machine learning model was used to compare the two groups. ResultsPatients with SSc exhibited higher indicators of haemoglobin concentration in the capillary and adjacent regions compared to controls, which were significant in the regions surrounding the capillaries (p<0.001). There were also spectral differences between the SSc and controls groups that could indicate differences in oxygenation of the capillaries and surrounding tissue. Additionally, a machine learning model distinguished SSc patients from healthy controls with an accuracy of 84%, suggesting potential for multispectral imaging to classify SSc based on structural and functional microvascular changes. ConclusionsData indicates that multispectral imaging differentiates between patients with SSc from controls based on differences in vascular function. Further work to develop a targeted spectral camera would further improve the contrast between patients with SSc and controls, enabling better imaging. Key messagesMultispectral imaging holds promise for providing functional oxygenation measurement in nailfold capillaroscopy. Significant oxygenation differences between individuals with systemic sclerosis and healthy controls can be detected with multispectral imaging in the tissue surrounding capillaries.

Deep Learning in Myocarditis: A Novel Approach to Severity Assessment

Nishimori, M., Otani, T., Asaumi, Y., Ohta-Ogo, K., Ikeda, Y., Amemiya, K., Noguchi, T., Izumi, C., Shinohara, M., Hatakeyama, K., Nishimura, K.

medrxiv logopreprintAug 2 2025
BackgroundMyocarditis is a life-threatening disease with significant hemodynamic risks during the acute phase. Although histopathological examination of myocardial biopsy specimens remains the gold standard for diagnosis, there is no established method for objectively quantifying cardiomyocyte damage. We aimed to develop an AI model to evaluate clinical myocarditis severity using comprehensive pathology data. MethodsWe retrospectively analyzed 314 patients (1076 samples) who underwent myocardial biopsy from 2002 to 2021 at the National Cerebrovascular Center. Among these patients, 158 were diagnosed with myocarditis based on the Dallas criteria. A Multiple Instance Learning (MIL) model served as a pre-trained classifier to detect myocarditis across whole-slide images. We then constructed two clinical severity-prediction models: (1) a logistic regression model (Model 1) using the density of inflammatory cells per unit area, and (2) a Transformer-based model (Model 2), which processed the top-ranked patches identified by the MIL model to predict clinical severe outcomes. ResultsModel 1 achieved an AUROC of 0.809, indicating a robust association between inflammatory cell density and severe myocarditis. In contrast, Model 2, the Transformer-based approach, yielded an AUROC of 0.993 and demonstrated higher accuracy and precision for severity prediction. Attention score visualizations showed that Model 2 captured both inflammatory cell infiltration and additional morphological features. These findings suggest that combining MIL with Transformer architectures enables more comprehensive identification of key histological markers associated with clinical severe disease. ConclusionsOur results highlight that a Transformer-based AI model analyzing whole-slide pathology images can accurately assess clinical myocarditis severity. Moreover, simply quantifying the extent of inflammatory cell infiltration also correlates strongly with clinical outcomes. These methods offer a promising avenue for improving diagnostic precision, guiding treatment decisions, and ultimately enhancing patient management. Future prospective studies are warranted to validate these models in broader clinical settings and facilitate their integration into routine pathological workflows. What is new?- This is the first study to apply an AI model for the diagnosis and severity assessment of myocarditis. - New evidence shows that inflammatory cell infiltration is related to the severity of myocarditis. - Using information from the entire tissue, not just inflammatory cells, allows for a more accurate assessment of myocarditis severity. What are the clinical implications?- The use of the AI model allows for an unprecedented histological evaluation of myocarditis severity, which can enhance early diagnosis and intervention strategies. - Rapid and precise assessments of myocarditis severity by the AI model can support clinicians in making timely and appropriate treatment decisions, potentially improving patient outcomes. - The incorporation of this AI model into clinical practice may streamline diagnostic workflows and optimize the allocation of medical resources, enhancing overall patient care.

Deep Learning-Based Multi-View Echocardiographic Framework for Comprehensive Diagnosis of Pericardial Disease

Jeong, S., Moon, I., Jeon, J., Jeong, D., Lee, J., kim, J., Lee, S.-A., Jang, Y., Yoon, Y. E., Chang, H.-J.

medrxiv logopreprintJul 25 2025
BackgroundPericardial disease exhibits a wide clinical spectrum, ranging from mild effusions to life-threatening tamponade or constriction pericarditis. While transthoracic echocardiography (TTE) is the primary diagnostic modality, its effectiveness is limited by operator dependence and incomplete evaluation of functional impact. Existing artificial intelligence models focus primarily on effusion detection, lacking comprehensive disease assessment. MethodsWe developed a deep learning (DL)-based framework that sequentially assesses pericardial disease: (1) morphological changes, including pericardial effusion amount (normal/small/moderate/large) and pericardial thickening or adhesion (yes/no), using five B-mode views, and (2) hemodynamic significance (yes/no), incorporating additional inputs from Doppler and inferior vena cava measurements. The developmental dataset comprises 2,253 TTEs from multiple Korean institutions (225 for internal testing), and the independent external test set consists of 274 TTEs. ResultsIn the internal test set, the model achieved diagnostic accuracy of 81.8-97.3% for pericardial effusion classification, 91.6% for pericardial thickening/adhesion, and 86.2% for hemodynamic significance. Corresponding accuracy in the external test set was 80.3-94.2%, 94.5%, and 85.5%, respectively. Area under the receiver operating curves (AUROCs) for the three tasks in the internal test set was 0.92-0.99, 0.90, and 0.79; and in the external test set, 0.95-0.98, 0.85, and 0.76. Sensitivity for detecting pericardial thickening/adhesion and hemodynamic significance was modest (66.7% and 68.8% in the internal test set), but improved substantially when cases with poor image quality were excluded (77.3%, and 80.8%). Similar performance gains were observed in subgroups with complete target views and a higher number of available video clips. ConclusionsThis study presents the first DL-based TTE model capable of comprehensive evaluation of pericardial disease, integrating both morphological and functional assessments. The proposed framework demonstrated strong generalizability and aligned with the real-world diagnostic workflow. However, caution is warranted when interpreting results under suboptimal imaging conditions.

The impacts of artificial intelligence on the workload of diagnostic radiology services: A rapid review and stakeholder contextualisation

Sutton, C., Prowse, J., Elshehaly, M., Randell, R.

medrxiv logopreprintJul 24 2025
BackgroundAdvancements in imaging technology, alongside increasing longevity and co-morbidities, have led to heightened demand for diagnostic radiology services. However, there is a shortfall in radiology and radiography staff to acquire, read and report on such imaging examinations. Artificial intelligence (AI) has been identified, notably by AI developers, as a potential solution to impact positively the workload of radiology services for diagnostics to address this staffing shortfall. MethodsA rapid review complemented with data from interviews with UK radiology service stakeholders was undertaken. ArXiv, Cochrane Library, Embase, Medline and Scopus databases were searched for publications in English published between 2007 and 2022. Following screening 110 full texts were included. Interviews with 15 radiology service managers, clinicians and academics were carried out between May and September 2022. ResultsMost literature was published in 2021 and 2022 with a distinct focus on AI for diagnostics of lung and chest disease (n = 25) notably COVID-19 and respiratory system cancers, closely followed by AI for breast screening (n = 23). AI contribution to streamline the workload of radiology services was categorised as autonomous, augmentative and assistive contributions. However, percentage estimates, of workload reduction, varied considerably with the most significant reduction identified in national screening programmes. AI was also recognised as aiding radiology services through providing second opinion, assisting in prioritisation of images for reading and improved quantification in diagnostics. Stakeholders saw AI as having the potential to remove some of the laborious work and contribute service resilience. ConclusionsThis review has shown there is limited data on real-world experiences from radiology services for the implementation of AI in clinical production. Autonomous, augmentative and assistive AI can, as noted in the article, decrease workload and aid reading and reporting, however the governance surrounding these advancements lags.

Interpretable Deep Learning Approaches for Reliable GI Image Classification: A Study with the HyperKvasir Dataset

Wahid, S. B., Rothy, Z. T., News, R. K., Rieyan, S. A.

medrxiv logopreprintJul 23 2025
Deep learning has emerged as a promising tool for automating gastrointestinal (GI) disease diagnosis. However, multi-class GI disease classification remains underexplored. This study addresses this gap by presenting a framework that uses advanced models like InceptionNetV3 and ResNet50, combined with boosting algorithms (XGB, LGBM), to classify lower GI abnormalities. InceptionNetV3 with XGB achieved the best recall of 0.81 and an F1 score of 0.90. To assist clinicians in understanding model decisions, the Grad-CAM technique, a form of explainable AI, was employed to highlight the critical regions influencing predictions, fostering trust in these systems. This approach significantly improves both the accuracy and reliability of GI disease diagnosis.
Page 1 of 768 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.