Sort by:
Page 1 of 16 results

Deep Learning in Myocarditis: A Novel Approach to Severity Assessment

Nishimori, M., Otani, T., Asaumi, Y., Ohta-Ogo, K., Ikeda, Y., Amemiya, K., Noguchi, T., Izumi, C., Shinohara, M., Hatakeyama, K., Nishimura, K.

medrxiv logopreprintAug 2 2025
BackgroundMyocarditis is a life-threatening disease with significant hemodynamic risks during the acute phase. Although histopathological examination of myocardial biopsy specimens remains the gold standard for diagnosis, there is no established method for objectively quantifying cardiomyocyte damage. We aimed to develop an AI model to evaluate clinical myocarditis severity using comprehensive pathology data. MethodsWe retrospectively analyzed 314 patients (1076 samples) who underwent myocardial biopsy from 2002 to 2021 at the National Cerebrovascular Center. Among these patients, 158 were diagnosed with myocarditis based on the Dallas criteria. A Multiple Instance Learning (MIL) model served as a pre-trained classifier to detect myocarditis across whole-slide images. We then constructed two clinical severity-prediction models: (1) a logistic regression model (Model 1) using the density of inflammatory cells per unit area, and (2) a Transformer-based model (Model 2), which processed the top-ranked patches identified by the MIL model to predict clinical severe outcomes. ResultsModel 1 achieved an AUROC of 0.809, indicating a robust association between inflammatory cell density and severe myocarditis. In contrast, Model 2, the Transformer-based approach, yielded an AUROC of 0.993 and demonstrated higher accuracy and precision for severity prediction. Attention score visualizations showed that Model 2 captured both inflammatory cell infiltration and additional morphological features. These findings suggest that combining MIL with Transformer architectures enables more comprehensive identification of key histological markers associated with clinical severe disease. ConclusionsOur results highlight that a Transformer-based AI model analyzing whole-slide pathology images can accurately assess clinical myocarditis severity. Moreover, simply quantifying the extent of inflammatory cell infiltration also correlates strongly with clinical outcomes. These methods offer a promising avenue for improving diagnostic precision, guiding treatment decisions, and ultimately enhancing patient management. Future prospective studies are warranted to validate these models in broader clinical settings and facilitate their integration into routine pathological workflows. What is new?- This is the first study to apply an AI model for the diagnosis and severity assessment of myocarditis. - New evidence shows that inflammatory cell infiltration is related to the severity of myocarditis. - Using information from the entire tissue, not just inflammatory cells, allows for a more accurate assessment of myocarditis severity. What are the clinical implications?- The use of the AI model allows for an unprecedented histological evaluation of myocarditis severity, which can enhance early diagnosis and intervention strategies. - Rapid and precise assessments of myocarditis severity by the AI model can support clinicians in making timely and appropriate treatment decisions, potentially improving patient outcomes. - The incorporation of this AI model into clinical practice may streamline diagnostic workflows and optimize the allocation of medical resources, enhancing overall patient care.

A clinically relevant morpho-molecular classification of lung neuroendocrine tumours

Sexton-Oates, A., Mathian, E., Candeli, N., Lim, Y., Voegele, C., Di Genova, A., Mange, L., Li, Z., van Weert, T., Hillen, L. M., Blazquez-Encinas, R., Gonzalez-Perez, A., Morrison, M. L., Lauricella, E., Mangiante, L., Bonheme, L., Moonen, L., Absenger, G., Altmuller, J., Degletagne, C., Brustugun, O. T., Cahais, V., Centonze, G., Chabrier, A., Cuenin, C., Damiola, F., de Montpreville, V. T., Deleuze, J.-F., Dingemans, A.-M. C., Fadel, E., Gadot, N., Ghantous, A., Graziano, P., Hofman, P., Hofman, V., Ibanez-Costa, A., Lacomme, S., Lopez-Bigas, N., Lund-Iversen, M., Milione, M., Muscarella, L

medrxiv logopreprintJul 18 2025
Lung neuroendocrine tumours (NETs, also known as carcinoids) are rapidly rising in incidence worldwide but have unknown aetiology and limited therapeutic options beyond surgery. We conducted multi-omic analyses on over 300 lung NETs including whole-genome sequencing (WGS), transcriptome profiling, methylation arrays, spatial RNA sequencing, and spatial proteomics. The integration of multi-omic data provides definitive proof of the existence of four strikingly different molecular groups that vary in patient characteristics, genomic and transcriptomic profiles, microenvironment, and morphology, as much as distinct diseases. Among these, we identify a new molecular group, enriched for highly aggressive supra-carcinoids, that displays an immune-rich microenvironment linked to tumour--macrophage crosstalk, and we uncover an undifferentiated cell population within supra-carcinoids, explaining their molecular and behavioural link to high-grade lung neuroendocrine carcinomas. Deep learning models accurately identified the Ca A1, Ca A2, and Ca B groups based on morphology alone, outperforming current histological criteria. The characteristic tumour microenvironment of supra-carcinoids and the validation of a panel of immunohistochemistry markers for the other three molecular groups demonstrates that these groups can be accurately identified based solely on morphological features, facilitating their implementation in the clinical setting. Our proposed morpho-molecular classification highlights group-specific therapeutic opportunities, including DLL3, FGFR, TERT, and BRAF inhibitors. Overall, our findings unify previously proposed molecular classifications and refine the lung cancer map by revealing novel tumour types and potential treatments, with significant implications for prognosis and treatment decision-making.

Towards automated multi-regional lung parcellation for 0.55-3T 3D T2w fetal MRI

Uus, A., Avena Zampieri, C., Downes, F., Egloff Collado, A., Hall, M., Davidson, J., Payette, K., Aviles Verdera, J., Grigorescu, I., Hajnal, J. V., Deprez, M., Aertsen, M., Hutter, J., Rutherford, M., Deprest, J., Story, L.

medrxiv logopreprintJun 26 2025
Fetal MRI is increasingly being employed in the diagnosis of fetal lung anomalies and segmentation-derived total fetal lung volumes are used as one of the parameters for prediction of neonatal outcomes. However, in clinical practice, segmentation is performed manually in 2D motion-corrupted stacks with thick slices which is time consuming and can lead to variations in estimated volumes. Furthermore, there is a known lack of consensus regarding a universal lung parcellation protocol and expected normal total lung volume formulas. The lungs are also segmented as one label without parcellation into lobes. In terms of automation, to the best of our knowledge, there have been no reported works on multi-lobe segmentation for fetal lung MRI. This work introduces the first automated deep learning segmentation pipeline for multi-regional lung segmentation for 3D motion-corrected T2w fetal body images for normal anatomy and congenital diaphragmatic hernia cases. The protocol for parcellation into 5 standard lobes was defined in the population-averaged 3D atlas. It was then used to generate a multi-label training dataset including 104 normal anatomy controls and 45 congenital diaphragmatic hernia cases from 0.55T, 1.5T and 3T acquisition protocols. The performance of 3D Attention UNet network was evaluated on 18 cases and showed good results for normal lung anatomy with expectedly lower Dice values for the ipsilateral lung. In addition, we also produced normal lung volumetry growth charts from 290 0.55T and 3T controls. This is the first step towards automated multi-regional fetal lung analysis for 3D fetal MRI.

Aneurysm Analysis Using Deep Learning

Bagheri Rajeoni, A., Pederson, B., Lessner, S. M., Valafar, H.

medrxiv logopreprintJun 25 2025
Precise aneurysm volume measurement offers a transformative edge for risk assessment and treatment planning in clinical settings. Currently, clinical assessments rely heavily on manual review of medical imaging, a process that is time-consuming and prone to inter-observer variability. The widely accepted standard-of-care primarily focuses on measuring aneurysm diameter at its widest point, providing a limited perspective on aneurysm morphology and lacking efficient methods to measure aneurysm volumes. Yet, volume measurement can offer deeper insight into aneurysm progression and severity. In this study, we propose an automated approach that leverages the strengths of pre-trained neural networks and expert systems to delineate aneurysm boundaries and compute volumes on an unannotated dataset from 60 patients. The dataset includes slice-level start/end annotations for aneurysm but no pixel-wise aorta segmentations. Our method utilizes a pre-trained UNet to automatically locate the aorta, employs SAM2 to track the aorta through vascular irregularities such as aneurysms down to the iliac bifurcation, and finally uses a Long Short-Term Memory (LSTM) network or expert system to identify the beginning and end points of the aneurysm within the aorta. Despite no manual aorta segmentation, our approach achieves promising accuracy, predicting the aneurysm start point with an R2 score of 71%, the end point with an R2 score of 76%, and the volume with an R2 score of 92%. This technique has the potential to facilitate large-scale aneurysm analysis and improve clinical decision-making by reducing dependence on annotated datasets.

Protocol of the observational study STRATUM-OS: First step in the development and validation of the STRATUM tool based on multimodal data processing to assist surgery in patients affected by intra-axial brain tumours

Fabelo, H., Ramallo-Farina, Y., Morera, J., Pineiro, J. F., Lagares, A., Jimenez-Roldan, L., Burstrom, G., Garcia-Bello, M. A., Garcia-Perez, L., Falero, R., Gonzalez, M., Duque, S., Rodriguez-Jimenez, C., Hernandez, M., Delgado-Sanchez, J. J., Paredes, A. B., Hernandez, G., Ponce, P., Leon, R., Gonzalez-Martin, J. M., Rodriguez-Esparragon, F., Callico, G. M., Wagner, A. M., Clavo, B., STRATUM,

medrxiv logopreprintJun 13 2025
IntroductionIntegrated digital diagnostics can support complex surgeries in many anatomic sites, and brain tumour surgery represents one of the most complex cases. Neurosurgeons face several challenges during brain tumour surgeries, such as differentiating critical tissue from brain tumour margins. To overcome these challenges, the STRATUM project will develop a 3D decision support tool for brain surgery guidance and diagnostics based on multimodal data processing, including hyperspectral imaging, integrated as a point-of-care computing tool in neurosurgical workflows. This paper reports the protocol for the development and technical validation of the STRATUM tool. Methods and analysisThis international multicentre, prospective, open, observational cohort study, STRATUM-OS (study: 28 months, pre-recruitment: 2 months, recruitment: 20 months, follow-up: 6 months), with no control group, will collect data from 320 patients undergoing standard neurosurgical procedures to: (1) develop and technically validate the STRATUM tool, and (2) collect the outcome measures for comparing the standard procedure versus the standard procedure plus the use of the STRATUM tool during surgery in a subsequent historically controlled non-randomized clinical trial. Ethics and disseminationThe protocol was approved by the participant Ethics Committees. Results will be disseminated in scientific conferences and peer-reviewed journals. Trial registration number[Pending Number] ARTICLE SUMMARYO_ST_ABSStrengths and limitations of this studyC_ST_ABSO_LISTRATUM-OS will be the first multicentre prospective observational study to develop and technically validate a 3D decision support tool for brain surgery guidance and diagnostics in real-time based on artificial intelligence and multimodal data processing, including the emerging hyperspectral imaging modality. C_LIO_LIThis study encompasses a prospective collection of multimodal pre, intra and postoperative medical data, including innovative imaging modalities, from patients with intra-axial brain tumours. C_LIO_LIThis large observational study will act as historical control in a subsequent clinical trial to evaluate a fully-working prototype. C_LIO_LIAlthough the estimated sample size is deemed adequate for the purpose of the study, the complexity of the clinical context and the type of surgery could potentially lead to under-recruitment and under-representation of less prevalent tumour types. C_LI

Physician-level classification performance across multiple imaging domains with a diagnostic medical foundation model and a large dataset of annotated medical images

Thieme, A. H., Miri, T., Marra, A. R., Kobayashi, T., Rodriguez-Nava, G., Li, Y., Barba, T., Er, A. G., Benzler, J., Gertler, M., Riechers, M., Hinze, C., Zheng, Y., Pelz, K., Nagaraj, D., Chen, A., Loeser, A., Ruehle, A., Zamboglou, C., Alyahya, L., Uhlig, M., Machiraju, G., Weimann, K., Lippert, C., Conrad, T., Ma, J., Novoa, R., Moor, M., Hernandez-Boussard, T., Alawad, M., Salinas, J. L., Mittermaier, M., Gevaert, O.

medrxiv logopreprintMay 31 2025
A diagnostic medical foundation model (MedFM) is an artificial intelligence (AI) system engineered to accurately determine diagnoses across various medical imaging modalities and specialties. To train MedFM, we created the PubMed Central Medical Images Dataset (PMCMID), the largest annotated medical image dataset to date, comprising 16,126,659 images from 3,021,780 medical publications. Using AI- and ontology-based methods, we identified 4,482,237 medical images (e.g., clinical photos, X-rays, ultrasounds) and generated comprehensive annotations. To optimize MedFMs performance and assess biases, 13,266 images were manually annotated to establish a multimodal benchmark. MedFM achieved physician-level performance in diagnosis tasks spanning radiology, dermatology, and infectious diseases without requiring specific training. Additionally, we developed the Image2Paper app, allowing clinicians to upload medical images and retrieve relevant literature. The correct diagnoses appeared within the top ten results in 88.4% and at least one relevant differential diagnosis in 93.0%. MedFM and PMCMID were made publicly available. FundingResearch reported here was partially supported by the National Cancer Institute (NCI) (R01 CA260271), the Saudi Company for Artificial Intelligence (SCAI) Authority, and the German Federal Ministry for Economic Affairs and Climate Action (BMWK) under the project DAKI-FWS (01MK21009E). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Page 1 of 16 results
Show
per page
1

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.