Deep Learning Image Reconstruction (DLIR) Algorithm to Maintain High Image Quality and Diagnostic Accuracy in Quadruple-low CT Angiography of Children with Pulmonary Sequestration: A Case Control Study.
Li H, Zhang Y, Hua S, Sun R, Zhang Y, Yang Z, Peng Y, Sun J
•papers•May 22 2025CT angiography (CTA) is a commonly used clinical examination to detect abnormal arteries and diagnose pulmonary sequestration (PS). Reducing the radiation dose, contrast medium dosage, and injection pressure in CTA, especially in children, has always been an important research topic, but few research is proven by pathology. The current study aimed to evaluate the diagnostic accuracy for children with PS in a quadruple-low CTA (4L-CTA: low tube voltage, radiation, contrast medium, and injection flow rate) using deep learning image reconstruction (DLIR) in comparison with routine protocol CTA with adaptive statistical iterative reconstruction-V (ASIR-V) MATERIALS AND METHODS: 53 patients (1.50±1.36years) suspected with PS were enrolled to undergo chest 4L-CTA using 70kVp tube voltage with radiation dose or 0.90 mGy in volumetric CT dose index (CTDIvol) and contrast medium dose of 0.8 ml/kg injected in 16 s. Images were reconstructed using DLIR. Another 53 patients (1.25±1.02years) with a routine dose protocol was used for comparison, and images were reconstructed with ASIR-V. The contrast-to-noise ratio (CNR) and edge-rise distance (ERD) of the aorta were calculated. The subjective overall image quality and artery visualization were evaluated using a 5-point scale (5, excellent; 3, acceptable). All patients underwent surgery after CT, the sensitivity and specificity for diagnosing PS were calculated. 4L-CTA reduced radiation dose by 51%, contrast dose by 47%, injection flow rate by 44% and injection pressure by 44% compared to the routine CTA (all p<0.05). Both groups had satisfactory subjective image quality and achieved 100% in both sensitivity and specificity for diagnosing PS. 4L-CTA had a reduced CNR (by 27%, p<0.05) but similar ERD, which reflects the image spatial resolution (p>0.05) compared to the routine CTA. 4L-CTA revealed small arteries with a diameter of 0.8 mm. DLIR ensures the realization of 4L-CTA in children with PS for significant radiation and contrast dose reduction, while maintaining image quality, visualization of small arteries, and high diagnostic accuracy.