Self-supervised Upsampling for Reconstructions with Generalized Enhancement in Photoacoustic Computed Tomography.
Authors
Abstract
Photoacoustic computed tomography (PACT) is an emerging hybrid imaging modality with potential applications in biomedicine. A major roadblock to the widespread adoption of PACT is the limited number of detectors, which gives rise to spatial aliasing and manifests as streak artifacts in the reconstructed image. A brute-force solution to the problem is to increase the number of detectors, which, however, is often undesirable due to escalated costs. In this study, we present a novel self-supervised learning approach, to overcome this long-standing challenge. We found that small blocks of PACT channel data show similarity at various downsampling rates. Based on this observation, a neural network trained on downsampled data can reliably perform accurate interpolation without requiring densely-sampled ground truth data, which is typically unavailable in real practice. Our method has undergone validation through numerical simulations, controlled phantom experiments, as well as ex vivo and in vivo animal tests, across multiple PACT systems. We have demonstrated that our technique provides an effective and cost-efficient solution to address the under-sampling issue in PACT, thereby enhancing the capabilities of this imaging technology.