Sort by:
Page 9 of 53522 results

The future of biomarkers for vascular contributions to cognitive impairment and dementia (VCID): proceedings of the 2025 annual workshop of the Albert research institute for white matter and cognition.

Lennon MJ, Karvelas N, Ganesh A, Whitehead S, Sorond FA, Durán Laforet V, Head E, Arfanakis K, Kolachalama VB, Liu X, Lu H, Ramirez J, Walker K, Weekman E, Wellington CL, Winston C, Barone FC, Corriveau RA

pubmed logopapersJun 21 2025
Advances in biomarkers and pathophysiology of vascular contributions to cognitive impairment and dementia (VCID) are expected to bring greater mechanistic insights, more targeted treatments, and potentially disease-modifying therapies. The 2025 Annual Workshop of the Albert Research Institute for White Matter and Cognition, sponsored by the Leo and Anne Albert Charitable Trust since 2015, focused on novel biomarkers for VCID. The meeting highlighted the complexity of dementia, emphasizing that the majority of cases involve multiple brain pathologies, with vascular pathology typically present. Potential novel approaches to diagnosis of disease processes and progression that may result in VCID included measures of microglial senescence and retinal changes, as well as artificial intelligence (AI) integration of multimodal datasets. Proteomic studies identified plasma proteins associated with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL; a rare genetic disorder affecting brain vessels) and age-related vascular pathology that suggested potential therapeutic targets. Blood-based microglial and brain-derived extracellular vesicles are promising tools for early detection of brain inflammation and other changes that have been associated with cognitive decline. Imaging measures of blood perfusion, oxygen extraction, and cerebrospinal fluid (CSF) flow were discussed as potential VCID biomarkers, in part because of correlations with classic pathological Alzheimer's disease (AD) biomarkers. MRI-visible perivascular spaces, which may be a novel imaging biomarker of sleep-driven glymphatic waste clearance dysfunction, are associated with vascular risk factors, lower cognitive function, and various brain pathologies including Alzheimer's, Parkinson's and cerebral amyloid angiopathy (CAA). People with Down syndrome are at high risk for dementia. Individuals with Down syndrome who develop dementia almost universally experience mixed brain pathologies, with AD pathology and cerebrovascular pathology being the most common. This follows the pattern in the general population where mixed pathologies are also predominant in the brains of people clinically diagnosed with dementia, including AD dementia. Intimate partner violence-related brain injury, hypertension's impact on dementia risk, and the promise of remote ischemic conditioning for treating VCID were additional themes.

Independent histological validation of MR-derived radio-pathomic maps of tumor cell density using image-guided biopsies in human brain tumors.

Nocera G, Sanvito F, Yao J, Oshima S, Bobholz SA, Teraishi A, Raymond C, Patel K, Everson RG, Liau LM, Connelly J, Castellano A, Mortini P, Salamon N, Cloughesy TF, LaViolette PS, Ellingson BM

pubmed logopapersJun 21 2025
In brain gliomas, non-invasive biomarkers reflecting tumor cellularity would be useful to guide supramarginal resections and to plan stereotactic biopsies. We aim to validate a previously-trained machine learning algorithm that generates cellularity prediction maps (CPM) from multiparametric MRI data to an independent, retrospective external cohort of gliomas undergoing image-guided biopsies, and to compare the performance of CPM and diffusion MRI apparent diffusion coefficient (ADC) in predicting cellularity. A cohort of patients with treatment-naïve or recurrent gliomas were prospectively studied. All patients underwent pre-surgical MRI according to the standardized brain tumor imaging protocol. The surgical sampling site was planned based on image-guided biopsy targets and tissue was stained with hematoxylin-eosin for cell density count. The correlation between MRI-derived CPM values and histological cellularity, and between ADC and histological cellularity, was evaluated both assuming independent observations and accounting for non-independent observations. Sixty-six samples from twenty-seven patients were collected. Thirteen patients had treatment-naïve tumors and fourteen had recurrent lesions. CPM value accurately predicted histological cellularity in treatment-naïve patients (b = 1.4, R<sup>2</sup> = 0.2, p = 0.009, rho = 0.41, p = 0.016, RMSE = 1503 cell/mm<sup>2</sup>), but not in the recurrent sub-cohort. Similarly, ADC values showed a significant association with histological cellularity only in treatment-naive patients (b = 1.3, R<sup>2</sup> = 0.22, p = 0.007; rho = -0.37, p = 0.03), not statistically different from the CPM correlation. These findings were confirmed with statistical tests accounting for non-independent observations. MRI-derived machine learning generated cellularity prediction maps (CPM) enabled a non-invasive evaluation of tumor cellularity in treatment-naïve glioma patients, although CPM did not clearly outperform ADC alone in this cohort.

Advances of MR imaging in glioma: what the neurosurgeon needs to know.

Falk Delgado A

pubmed logopapersJun 21 2025
Glial tumors and especially glioblastoma present a major challenge in neuro-oncology due to their infiltrative growth, resistance to therapy, and poor overall survival-despite aggressive treatments such as maximal safe resection and chemoradiotherapy. These tumors typically manifest through neurological symptoms such as seizures, headaches, and signs of increased intracranial pressure, prompting urgent neuroimaging. At initial diagnosis, MRI plays a central role in differentiating true neoplasms from tumor mimics, including inflammatory or infectious conditions. Advanced techniques such as perfusion-weighted imaging (PWI) and diffusion-weighted imaging (DWI) enhance diagnostic specificity and may prevent unnecessary surgical intervention. In the preoperative phase, MRI contributes to surgical planning through the use of functional MRI (fMRI) and diffusion tensor imaging (DTI), enabling localization of eloquent cortex and white matter tracts. These modalities support safer resections by informing trajectory planning and risk assessment. Emerging MR techniques, including magnetic resonance spectroscopy, amide proton transfer imaging, and 2HG quantification, offer further potential in delineating tumor infiltration beyond contrast-enhancing margins. Postoperatively, MRI is important for evaluating residual tumor, detecting surgical complications, and guiding radiotherapy planning. During treatment surveillance, MRI assists in distinguishing true progression from pseudoprogression or radiation necrosis, thereby guiding decisions on additional surgery, changes in systemic therapy, or inclusion into clinical trials. The continued evolution of MRI hardware, software, and image analysis-particularly with the integration of machine learning-will be critical for supporting precision neurosurgical oncology. This review highlights how advanced MRI techniques can inform clinical decision-making at each stage of care in patients with high-grade gliomas.

OpenMAP-BrainAge: Generalizable and Interpretable Brain Age Predictor

Pengyu Kan, Craig Jones, Kenichi Oishi

arxiv logopreprintJun 21 2025
Purpose: To develop an age prediction model which is interpretable and robust to demographic and technological variances in brain MRI scans. Materials and Methods: We propose a transformer-based architecture that leverages self-supervised pre-training on large-scale datasets. Our model processes pseudo-3D T1-weighted MRI scans from three anatomical views and incorporates brain volumetric information. By introducing a stem architecture, we reduce the conventional quadratic complexity of transformer models to linear complexity, enabling scalability for high-dimensional MRI data. We trained our model on ADNI2 $\&$ 3 (N=1348) and OASIS3 (N=716) datasets (age range: 42 - 95) from the North America, with an 8:1:1 split for train, validation and test. Then, we validated it on the AIBL dataset (N=768, age range: 60 - 92) from Australia. Results: We achieved an MAE of 3.65 years on ADNI2 $\&$ 3 and OASIS3 test set and a high generalizability of MAE of 3.54 years on AIBL. There was a notable increase in brain age gap (BAG) across cognitive groups, with mean of 0.15 years (95% CI: [-0.22, 0.51]) in CN, 2.55 years ([2.40, 2.70]) in MCI, 6.12 years ([5.82, 6.43]) in AD. Additionally, significant negative correlation between BAG and cognitive scores was observed, with correlation coefficient of -0.185 (p < 0.001) for MoCA and -0.231 (p < 0.001) for MMSE. Gradient-based feature attribution highlighted ventricles and white matter structures as key regions influenced by brain aging. Conclusion: Our model effectively fused information from different views and volumetric information to achieve state-of-the-art brain age prediction accuracy, improved generalizability and interpretability with association to neurodegenerative disorders.

Ultrafast J-resolved magnetic resonance spectroscopic imaging for high-resolution metabolic brain imaging.

Zhao Y, Li Y, Jin W, Guo R, Ma C, Tang W, Li Y, El Fakhri G, Liang ZP

pubmed logopapersJun 20 2025
Magnetic resonance spectroscopic imaging has potential for non-invasive metabolic imaging of the human brain. Here we report a method that overcomes several long-standing technical barriers associated with clinical magnetic resonance spectroscopic imaging, including long data acquisition times, limited spatial coverage and poor spatial resolution. Our method achieves ultrafast data acquisition using an efficient approach to encode spatial, spectral and J-coupling information of multiple molecules. Physics-informed machine learning is synergistically integrated in data processing to enable reconstruction of high-quality molecular maps. We validated the proposed method through phantom experiments. We obtained high-resolution molecular maps from healthy participants, revealing metabolic heterogeneities in different brain regions. We also obtained high-resolution whole-brain molecular maps in regular clinical settings, revealing metabolic alterations in tumours and multiple sclerosis. This method has the potential to transform clinical metabolic imaging and provide a long-desired capability for non-invasive label-free metabolic imaging of brain function and diseases for both research and clinical applications.

Effective workflow from multimodal MRI data to model-based prediction.

Jung K, Wischnewski KJ, Eickhoff SB, Popovych OV

pubmed logopapersJun 20 2025
Predicting human behavior from neuroimaging data remains a complex challenge in neuroscience. To address this, we propose a systematic and multi-faceted framework that incorporates a model-based workflow using dynamical brain models. This approach utilizes multi-modal MRI data for brain modeling and applies the optimized modeling outcome to machine learning. We demonstrate the performance of such an approach through several examples such as sex classification and prediction of cognition or personality traits. We in particular show that incorporating the simulated data into machine learning can significantly improve the prediction performance compared to using empirical features alone. These results suggest considering the output of the dynamical brain models as an additional neuroimaging data modality that complements empirical data by capturing brain features that are difficult to measure directly. The discussed model-based workflow can offer a promising avenue for investigating and understanding inter-individual variability in brain-behavior relationships and enhancing prediction performance in neuroimaging research.

The value of multimodal neuroimaging in the diagnosis and treatment of post-traumatic stress disorder: a narrative review.

Zhang H, Hu Y, Yu Y, Zhou Z, Sun Y, Qi C, Yang L, Xie H, Zhang J, Zhu H

pubmed logopapersJun 20 2025
Post-traumatic stress disorder (PTSD) is a delayed-onset or prolonged persistent psychiatric disorder caused by individuals experiencing an unusually threatening or catastrophic stressful event or situation. Due to its long duration and recurrent nature, unimodal neuroimaging tools such as computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and electroencephalography (EEG) have been widely used in the diagnosis and treatment of PTSD for early intervention. However, as compared with an unimodal approach, a multimodal imaging approach can better capture integrated neural mechanisms underlying the occurrence and development of PTSD, including predisposing factors, changes in neural activity, and physiological mechanisms of symptoms. Moreover, a multimodal neuroimaging approach can aid the diagnosis and treatment of PTSD, facilitate searching for biomarkers at different stages of PTSD, and explore biomarkers for symptomatic improvement. However, at present, the majority of PTSD studies remain unimodal, while the combination of multimodal brain imaging data with machine learning will become an important direction for future research.

Image-Based Search in Radiology: Identification of Brain Tumor Subtypes within Databases Using MRI-Based Radiomic Features.

von Reppert M, Chadha S, Willms K, Avesta A, Maleki N, Zeevi T, Lost J, Tillmanns N, Jekel L, Merkaj S, Lin M, Hoffmann KT, Aneja S, Aboian MS

pubmed logopapersJun 20 2025
Existing neuroradiology reference materials do not cover the full range of primary brain tumor presentations, and text-based medical image search engines are limited by the lack of consistent structure in radiology reports. To address this, an image-based search approach is introduced here, leveraging an institutional database to find reference MRIs visually similar to presented query cases. Two hundred ninety-five patients (mean age and standard deviation, 51 ± 20 years) with primary brain tumors who underwent surgical and/or radiotherapeutic treatment between 2000 and 2021 were included in this retrospective study. Semiautomated convolutional neural network-based tumor segmentation was performed, and radiomic features were extracted. The data set was split into reference and query subsets, and dimensionality reduction was applied to cluster reference cases. Radiomic features extracted from each query case were projected onto the clustered reference cases, and nearest neighbors were retrieved. Retrieval performance was evaluated by using mean average precision at k, and the best-performing dimensionality reduction technique was identified. Expert readers independently rated visual similarity by using a 5-point Likert scale. t-Distributed stochastic neighbor embedding with 6 components was the highest-performing dimensionality reduction technique, with mean average precision at 5 ranging from 78%-100% by tumor type. The top 5 retrieved reference cases showed high visual similarity Likert scores with corresponding query cases (76% 'similar' or 'very similar'). We introduce an image-based search method for exploring historical MR images of primary brain tumors and fetching reference cases closely resembling queried ones. Assessment involving comparison of tumor types and visual similarity Likert scoring by expert neuroradiologists validates the effectiveness of this method.

BioTransX: A novel bi-former based hybrid model with bi-level routing attention for brain tumor classification with explainable insights.

Rajpoot R, Jain S, Semwal VB

pubmed logopapersJun 20 2025
Brain tumors, known for their life-threatening implications, underscore the urgency of precise and interpretable early detection. Expertise remains essential for accurate identification through MRI scans due to the intricacies involved. However, the growing recognition of automated detection systems holds the potential to enhance accuracy and improve interpretability. By consistently providing easily comprehensible results, these automated solutions could boost the overall efficiency and effectiveness of brain tumor diagnosis, promising a transformative era in healthcare. This paper introduces a new hybrid model, BioTransX, which uses a bi-former encoder mechanism, a dynamic sparse attention-based transformer, in conjunction with ensemble convolutional networks. Recognizing the importance of better contrast and data quality, we applied Contrast-Limited Adaptive Histogram Equalization (CLAHE) during the initial data processing stage. Additionally, to address the crucial aspect of model interpretability, we integrated Grad-CAM and Gradient Attention Rollout, which elucidate decisions by highlighting influential regions within medical images. Our hybrid deep learning model was primarily evaluated on the Kaggle MRI dataset for multi-class brain tumor classification, achieving a mean accuracy and F1-score of 99.29%. To validate its generalizability and robustness, BioTransX was further tested on two additional benchmark datasets, BraTS and Figshare, where it consistently maintained high performance across key evaluation metrics. The transformer-based hybrid model demonstrated promising performance in explainable identification and offered notable advantages in computational efficiency and memory usage. These strengths differentiate BioTransX from existing models in the literature and make it ideal for real-world deployment in resource-constrained clinical infrastructures.

Three-dimensional U-Net with transfer learning improves automated whole brain delineation from MRI brain scans of rats, mice, and monkeys.

Porter VA, Hobson BA, D'Almeida AJ, Bales KL, Lein PJ, Chaudhari AJ

pubmed logopapersJun 20 2025
Automated whole-brain delineation (WBD) techniques often struggle to generalize across pre-clinical studies due to variations in animal models, magnetic resonance imaging (MRI) scanners, and tissue contrasts. We developed a 3D U-Net neural network for WBD pre-trained on organophosphate intoxication (OPI) rat brain MRI scans. We used transfer learning (TL) to adapt this OPI-pretrained network to other animal models: rat model of Alzheimer's disease (AD), mouse model of tetramethylenedisulfotetramine (TETS) intoxication, and titi monkey model of social bonding. We assessed an OPI-pretrained 3D U-Net across animal models under three conditions: (1) direct application to each dataset; (2) utilizing TL; and (3) training disease-specific U-Net models. For each condition, training dataset size (TDS) was optimized, and output WBDs were compared to manual segmentations for accuracy. The OPI-pretrained 3D U-Net (TDS = 100) achieved the best accuracy [median[min-max]] for the test OPI dataset with a Dice coefficient (DC) = [0.987 [0.977-0.992]] and Hausdorff distance (HD) = [0.86 [0.55-1.27]]mm. TL improved generalization across all models [AD (TDS = 40): DC = 0.987 [0.977-0.992] and HD = 0.72 [0.54-1.00]mm; TETS (TDS = 10): DC = 0.992 [0.984-0.993] and HD = 0.40 [0.31-0.50]mm; Monkey (TDS = 8): DC = 0.977 [0.968-0.979] and HD = 3.03 [2.19-3.91]mm], showing performance comparable to disease-specific networks. The OPI-pretrained 3D U-Net with TL achieved accuracy comparable to disease-specific networks with reduced training data (TDS ≤ 40 scans) across all models. Future work will focus on developing a multi-region delineation pipeline for pre-clinical MRI brain data, utilizing the proposed WBD as an initial step.
Page 9 of 53522 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.