Sort by:
Page 84 of 91901 results

AI-based metal artefact correction algorithm for radiotherapy patients with dental hardware in head and neck CT: Towards precise imaging.

Yu X, Zhong S, Zhang G, Du J, Wang G, Hu J

pubmed logopapersMay 14 2025
To investigate the clinical efficiency of an AI-based metal artefact correction algorithm (AI-MAC), for reducing dental metal artefacts in head and neck CT, compared to conventional interpolation-based MAC. We retrospectively collected 41 patients with non-removal dental hardware who underwent non-contrast head and neck CT prior to radiotherapy. All images were reconstructed with standard reconstruction algorithm (SRA), and were additionally processed with both conventional MAC and AI-MAC. The image quality of SRA, MAC and AI-MAC were compared by qualitative scoring on a 5-point scale, with scores ≥ 3 considered interpretable. This was followed by a quantitative evaluation, including signal-to-noise ratio (SNR) and artefact index (Idxartefact). Organ contouring accuracy was quantified via calculating the dice similarity coefficient (DSC) and hausdorff distance (HD) for oral cavity and teeth, using the clinically accepted contouring as reference. Moreover, the treatment planning dose distribution for oral cavity was assessed. AI-MAC yielded superior qualitative image quality as well as quantitative metrics, including SNR and Idxartefact, to SRA and MAC. The image interpretability significantly improved from 41.46% for SRA and 56.10% for MAC to 92.68% for AI-MAC (p < 0.05). Compared to SRA and MAC, the best DSC and HD for both oral cavity and teeth were obtained on AI-MAC (all p < 0.05). No significant differences for dose distribution were found among the three image sets. AI-MAC outperforms conventional MAC in metal artefact reduction, achieving superior image quality with high image interpretability for patients with dental hardware undergoing head and neck CT. Furthermore, the use of AI-MAC improves the accuracy of organ contouring while providing consistent dose calculation against metal artefacts in radiotherapy. AI-MAC is a novel deep learning-based technique for reducing metal artefacts on CT. This in-vivo study first demonstrated its capability of reducing metal artefacts while preserving organ visualization, as compared with conventional MAC.

Deep learning for cerebral vascular occlusion segmentation: A novel ConvNeXtV2 and GRN-integrated U-Net framework for diffusion-weighted imaging.

Ince S, Kunduracioglu I, Algarni A, Bayram B, Pacal I

pubmed logopapersMay 14 2025
Cerebral vascular occlusion is a serious condition that can lead to stroke and permanent neurological damage due to insufficient oxygen and nutrients reaching brain tissue. Early diagnosis and accurate segmentation are critical for effective treatment planning. Due to its high soft tissue contrast, Magnetic Resonance Imaging (MRI) is commonly used for detecting these occlusions such as ischemic stroke. However, challenges such as low contrast, noise, and heterogeneous lesion structures in MRI images complicate manual segmentation and often lead to misinterpretations. As a result, deep learning-based Computer-Aided Diagnosis (CAD) systems are essential for faster and more accurate diagnosis and treatment methods, although they can sometimes face challenges such as high computational costs and difficulties in segmenting small or irregular lesions. This study proposes a novel U-Net architecture enhanced with ConvNeXtV2 blocks and GRN-based Multi-Layer Perceptrons (MLP) to address these challenges in cerebral vascular occlusion segmentation. This is the first application of ConvNeXtV2 in this domain. The proposed model significantly improves segmentation accuracy, even in low-contrast regions, while maintaining high computational efficiency, which is crucial for real-world clinical applications. To reduce false positives and improve overall accuracy, small lesions (≤5 pixels) were removed in the preprocessing step with the support of expert clinicians. Experimental results on the ISLES 2022 dataset showed superior performance with an Intersection over Union (IoU) of 0.8015 and a Dice coefficient of 0.8894. Comparative analyses indicate that the proposed model achieves higher segmentation accuracy than existing U-Net variants and other methods, offering a promising solution for clinical use.

A fully automatic radiomics pipeline for postoperative facial nerve function prediction of vestibular schwannoma.

Song G, Li K, Wang Z, Liu W, Xue Q, Liang J, Zhou Y, Geng H, Liu D

pubmed logopapersMay 14 2025
Vestibular schwannoma (VS) is the most prevalent intracranial schwannoma. Surgery is one of the options for the treatment of VS, with the preservation of facial nerve (FN) function being the primary objective. Therefore, postoperative FN function prediction is essential. However, achieving automation for such a method remains a challenge. In this study, we proposed a fully automatic deep learning approach based on multi-sequence magnetic resonance imaging (MRI) to predict FN function after surgery in VS patients. We first developed a segmentation network 2.5D Trans-UNet, which combined Transformer and U-Net to optimize contour segmentation for radiomic feature extraction. Next, we built a deep learning network based on the integration of 1DConvolutional Neural Network (1DCNN) and Gated Recurrent Unit (GRU) to predict postoperative FN function using the extracted features. We trained and tested the 2.5D Trans-UNet segmentation network on public and private datasets, achieving accuracies of 89.51% and 90.66%, respectively, confirming the model's strong performance. Then Feature extraction and selection were performed on the private dataset's segmentation results using 2.5D Trans-UNet. The selected features were used to train the 1DCNN-GRU network for classification. The results showed that our proposed fully automatic radiomics pipeline outperformed the traditional radiomics pipeline on the test set, achieving an accuracy of 88.64%, demonstrating its effectiveness in predicting the postoperative FN function in VS patients. Our proposed automatic method has the potential to become a valuable decision-making tool in neurosurgery, assisting neurosurgeons in making more informed decisions regarding surgical interventions and improving the treatment of VS patients.

Early detection of Alzheimer's disease progression stages using hybrid of CNN and transformer encoder models.

Almalki H, Khadidos AO, Alhebaishi N, Senan EM

pubmed logopapersMay 14 2025
Alzheimer's disease (AD) is a neurodegenerative disorder that affects memory and cognitive functions. Manual diagnosis is prone to human error, often leading to misdiagnosis or delayed detection. MRI techniques help visualize the fine tissues of the brain cells, indicating the stage of disease progression. Artificial intelligence techniques analyze MRI with high accuracy and extract subtle features that are difficult to diagnose manually. In this study, a modern methodology was designed that combines the power of CNN models (ResNet101 and GoogLeNet) to extract local deep features and the power of Vision Transformer (ViT) models to extract global features and find relationships between image spots. First, the MRI images of the Open Access Imaging Studies Series (OASIS) dataset were improved by two filters: the adaptive median filter (AMF) and Laplacian filter. The ResNet101 and GoogLeNet models were modified to suit the feature extraction task and reduce computational cost. The ViT architecture was modified to reduce the computational cost while increasing the number of attention vertices to further discover global features and relationships between image patches. The enhanced images were fed into the proposed ViT-CNN methodology. The enhanced images were fed to the modified ResNet101 and GoogLeNet models to extract the deep feature maps with high accuracy. Deep feature maps were fed into the modified ViT model. The deep feature maps were partitioned into 32 feature maps using ResNet101 and 16 feature maps using GoogLeNet, both with a size of 64 features. The feature maps were encoded to recognize the spatial arrangement of the patch and preserve the relationship between patches, helping the self-attention layers distinguish between patches based on their positions. They were fed to the transformer encoder, which consisted of six blocks and multiple vertices to focus on different patterns or regions simultaneously. Finally, the MLP classification layers classify each image into one of four dataset classes. The improved ResNet101-ViT hybrid methodology outperformed the GoogLeNet-ViT hybrid methodology. ResNet101-ViT achieved 98.7% accuracy, 95.05% AUC, 96.45% precision, 99.68% sensitivity, and 97.78% specificity.

[Radiosurgery of benign intracranial lesions. Indications, results , and perspectives].

Danthez N, De Cournuaud C, Pistocchi S, Aureli V, Giammattei L, Hottinger AF, Schiappacasse L

pubmed logopapersMay 14 2025
Stereotactic radiosurgery (SRS) is a non-invasive technique that is transforming the management of benign intracranial lesions through its precision and preservation of healthy tissues. It is effective for meningiomas, trigeminal neuralgia (TN), pituitary adenomas, vestibular schwannomas, and arteriovenous malformations. SRS ensures high tumor control rates, particularly for Grade I meningiomas and vestibular schwannomas. For refractory TN, it provides initial pain relief > 80 %. The advent of technologies such as PET-MRI, hypofractionation, and artificial intelligence is further improving treatment precision, but challenges remain, including the management of late side effects and standardization of practice.

Comparative performance of large language models in structuring head CT radiology reports: multi-institutional validation study in Japan.

Takita H, Walston SL, Mitsuyama Y, Watanabe K, Ishimaru S, Ueda D

pubmed logopapersMay 14 2025
To compare the diagnostic performance of three proprietary large language models (LLMs)-Claude, GPT, and Gemini-in structuring free-text Japanese radiology reports for intracranial hemorrhage and skull fractures, and to assess the impact of three different prompting approaches on model accuracy. In this retrospective study, head CT reports from the Japan Medical Imaging Database between 2018 and 2023 were collected. Two board-certified radiologists established the ground truth regarding intracranial hemorrhage and skull fractures through independent review and consensus. Each radiology report was analyzed by three LLMs using three prompting strategies-Standard, Chain of Thought, and Self Consistency prompting. Diagnostic performance (accuracy, precision, recall, and F1-score) was calculated for each LLM-prompt combination and compared using McNemar's tests with Bonferroni correction. Misclassified cases underwent qualitative error analysis. A total of 3949 head CT reports from 3949 patients (mean age 59 ± 25 years, 56.2% male) were enrolled. Across all institutions, 856 patients (21.6%) had intracranial hemorrhage and 264 patients (6.6%) had skull fractures. All nine LLM-prompt combinations achieved very high accuracy. Claude demonstrated significantly higher accuracy for intracranial hemorrhage than GPT and Gemini, and also outperformed Gemini for skull fractures (p < 0.0001). Gemini's performance improved notably with Chain of Thought prompting. Error analysis revealed common challenges including ambiguous phrases and findings unrelated to intracranial hemorrhage or skull fractures, underscoring the importance of careful prompt design. All three proprietary LLMs exhibited strong performance in structuring free-text head CT reports for intracranial hemorrhage and skull fractures. While the choice of prompting method influenced accuracy, all models demonstrated robust potential for clinical and research applications. Future work should refine the prompts and validate these approaches in prospective, multilingual settings.

An automated cascade framework for glioma prognosis via segmentation, multi-feature fusion and classification techniques.

Hamoud M, Chekima NEI, Hima A, Kholladi NH

pubmed logopapersMay 13 2025
Glioma is one of the most lethal types of brain tumors, accounting for approximately 33% of all diagnosed brain tumor cases. Accurate segmentation and classification are crucial for precise glioma characterization, emphasizing early detection of malignancy, effective treatment planning, and prevention of tumor progression. Magnetic Resonance Imaging (MRI) serves as a non-invasive imaging modality that allows detailed examination of gliomas without exposure to ionizing radiation. However, manual analysis of MRI scans is impractical, time-consuming, subjective, and requires specialized expertise from radiologists. To address this, computer-aided diagnosis (CAD) systems have greatly evolved as powerful tools to support neuro-oncologists in the brain cancer screening process. In this work, we present a glioma classification framework based on 3D multi-modal MRI segmentation using the CNN models SegResNet and Swin UNETR which incorporates transformer mechanisms for enhancing segmentation performance. MRI images undergo preprocessing with a Gaussian filter and skull stripping to improve tissue localization. Key textural features are then extracted from segmented tumor regions using Gabor Transform, Discrete Wavelet Transform (DWT), and deep features from ResNet50. These features are fused, normalized, and classified using a Support Vector Machine (SVM) to distinguish between Low-Grade Glioma (LGG) and High-Grade Glioma (HGG). Extensive experiments on benchmark datasets, including BRATS2020 and BRATS2023, demonstrate the effectiveness of the proposed approach. Our model achieved Dice scores of 0.815 for Tumor Core, 0.909 for Whole Tumor, and 0.829 for Enhancing Tumor. Concerning classification, the framework attained 97% accuracy, 94% precision, 96% recall, and a 95% F1-score. These results highlight the potential of the proposed framework to provide reliable support for radiologists in the early detection and classification of gliomas.

AmygdalaGo-BOLT: an open and reliable AI tool to trace boundaries of human amygdala

Zhou, Q., Dong, B., Gao, P., Jintao, W., Xiao, J., Wang, W., Liang, P., Lin, D., Zuo, X.-N., He, H.

biorxiv logopreprintMay 13 2025
Each year, thousands of brain MRI scans are collected to study structural development in children and adolescents. However, the amygdala, a particularly small and complex structure, remains difficult to segment reliably, especially in developing populations where its volume is even smaller. To address this challenge, we developed AmygdalaGo-BOLT, a boundary-aware deep learning model tailored for human amygdala segmentation. It was trained and validated using 854 manually labeled scans from pediatric datasets, with independent samples used to ensure performance generalizability. The model integrates multiscale image features, spatial priors, and self-attention mechanisms within a compact encoder-decoder architecture to enhance boundary detection. Validation across multiple imaging centers and age groups shows that AmygdalaGo-BOLT closely matches expert manual labels, improves processing efficiency, and outperforms existing tools in accuracy. This enables robust and scalable analysis of amygdala morphology in developmental neuroimaging studies where manual tracing is impractical. To support open and reproducible science, we publicly release both the labeled datasets and the full source code.

Highly Undersampled MRI Reconstruction via a Single Posterior Sampling of Diffusion Models

Jin Liu, Qing Lin, Zhuang Xiong, Shanshan Shan, Chunyi Liu, Min Li, Feng Liu, G. Bruce Pike, Hongfu Sun, Yang Gao

arxiv logopreprintMay 13 2025
Incoherent k-space under-sampling and deep learning-based reconstruction methods have shown great success in accelerating MRI. However, the performance of most previous methods will degrade dramatically under high acceleration factors, e.g., 8$\times$ or higher. Recently, denoising diffusion models (DM) have demonstrated promising results in solving this issue; however, one major drawback of the DM methods is the long inference time due to a dramatic number of iterative reverse posterior sampling steps. In this work, a Single Step Diffusion Model-based reconstruction framework, namely SSDM-MRI, is proposed for restoring MRI images from highly undersampled k-space. The proposed method achieves one-step reconstruction by first training a conditional DM and then iteratively distilling this model. Comprehensive experiments were conducted on both publicly available fastMRI images and an in-house multi-echo GRE (QSM) subject. Overall, the results showed that SSDM-MRI outperformed other methods in terms of numerical metrics (PSNR and SSIM), qualitative error maps, image fine details, and latent susceptibility information hidden in MRI phase images. In addition, the reconstruction time for a 320*320 brain slice of SSDM-MRI is only 0.45 second, which is only comparable to that of a simple U-net, making it a highly effective solution for MRI reconstruction tasks.

Fast cortical thickness estimation using deep learning-based anatomy segmentation and diffeomorphic registration.

Wu J, Zhou S

pubmed logopapersMay 13 2025
Accurately and efficiently estimating the cortical thickness from magnetic resonance images (MRIs) is crucial for neuroscientific studies and clinical applications with various large-scale datasets. Diffeomorphic registration-based cortical thickness estimation (DiReCT) is a prominent traditional method of calculating such measures directly from original MRIs by applying diffeomorphic registration on segmented tissues. However, it suffers from prolonged computational time and limited reproducibility, impediments to its application in large-scale studies or real-time environments. This paper proposes a framework for cortical thickness estimation using deep learning-based anatomy segmentation and diffeomorphic registration. The framework begins by applying a convolutional neural network (CNN) segmentation model to the original image, generating a segmentation map that accurately delineates the cortical boundaries. Subsequently, a pair of distance maps generated from the segmentation map is injected into an unsupervised learning-based registration network for fast and diffeomorphic registration. A novel algorithm based on diffeomorphisms of different time points is proposed to calculate the final thickness map. We systematically evaluated and compared our method with surface-based measures from FreeSurfer on two distinct datasets. The experimental results demonstrated a superior performance of the proposed method, surpassing the performance of DiReCT and DL+DiReCT in terms of time efficiency and consistency with FreeSurfer. Our code and pre-trained models are publicly available at: https://github.com/wujiong-hub/DL-CTE.git.
Page 84 of 91901 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.