Sort by:
Page 84 of 99990 results

Advances and current research status of early diagnosis for gallbladder cancer.

He JJ, Xiong WL, Sun WQ, Pan QY, Xie LT, Jiang TA

pubmed logopapersJun 1 2025
Gallbladder cancer (GBC) is the most common malignant tumor in the biliary system, characterized by high malignancy, aggressiveness, and poor prognosis. Early diagnosis holds paramount importance in ameliorating therapeutic outcomes. Presently, the clinical diagnosis of GBC primarily relies on clinical-radiological-pathological approach. However, there remains a potential for missed diagnosis and misdiagnose in the realm of clinical practice. We firstly analyzed the blood-based biomarkers, such as carcinoembryonic antigen and carbohydrate antigen 19-9. Subsequently, we evaluated the diagnostic performance of various imaging modalities, including ultrasound (US), endoscopic ultrasound (EUS), computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography/computed tomography (PET/CT) and pathological examination, emphasizing their strengths and limitations in detecting early-stage GBC. Furthermore, we explored the potential of emerging technologies, particularly artificial intelligence (AI) and liquid biopsy, to revolutionize GBC diagnosis. AI algorithms have demonstrated improved image analysis capabilities, while liquid biopsy offers the promise of non-invasive and real-time monitoring. However, the translation of these advancements into clinical practice necessitates further validation and standardization. The review highlighted the advantages and limitations of current diagnostic approaches and underscored the need for innovative strategies to enhance diagnostic accuracy of GBC. In addition, we emphasized the importance of multidisciplinary collaboration to improve early diagnosis of GBC and ultimately patient outcomes. This review endeavoured to impart fresh perspectives and insights into the early diagnosis of GBC.

Human-AI collaboration for ultrasound diagnosis of thyroid nodules: a clinical trial.

Edström AB, Makouei F, Wennervaldt K, Lomholt AF, Kaltoft M, Melchiors J, Hvilsom GB, Bech M, Tolsgaard M, Todsen T

pubmed logopapersJun 1 2025
This clinical trial examined how the articifial intelligence (AI)-based diagnostics system S-Detect for Thyroid influences the ultrasound diagnostic work-up of thyroid ultrasound (US) performed by different US users in clinical practice and how different US users influences the diagnostic accuracy of S-Detect. We conducted a clinical trial with 20 participants, including medical students, US novice physicians, and US experienced physicians. Five patients with thyroid nodules (one malignant and four benign) volunteered to undergo a thyroid US scan performed by all 20 participants using the same US systems with S-Detect installed. Participants performed a focused thyroid US on each patient case and made a nodule classification according to the European Thyroid Imaging Reporting And Data System (EU-TIRADS). They then performed a S-Detect analysis of the same nodule and were asked to re-evaluate their EU-TIRADS reporting. From the EU-TIRADS assessments by participants, we derived a biopsy recommendation outcome of whether fine needle aspiration biopsy (FNAB) was recommended. The mean diagnostic accuracy for S-Detect was 71.3% (range 40-100%) among all participants, with no significant difference between the groups (p = 0.31). The accuracy of our biopsy recommendation outcome was 69.8% before and 69.2% after AI for all participants (p = 0.75). In this trial, we did not find S-Detect to improve the thyroid diagnostic work-up in clinical practice among novice and intermediate ultrasound operators. However, the operator had a substantial impact on the AI-generated ultrasound diagnosis, with a variation in diagnostic accuracy from 40 to 100%, despite the same patients and ultrasound machines being used in the trial.

Diagnosis of Thyroid Nodule Malignancy Using Peritumoral Region and Artificial Intelligence: Results of Hand-Crafted, Deep Radiomics Features and Radiologists' Assessment in Multicenter Cohorts.

Abbasian Ardakani A, Mohammadi A, Yeong CH, Ng WL, Ng AH, Tangaraju KN, Behestani S, Mirza-Aghazadeh-Attari M, Suresh R, Acharya UR

pubmed logopapersJun 1 2025
To develop, test, and externally validate a hybrid artificial intelligence (AI) model based on hand-crafted and deep radiomics features extracted from B-mode ultrasound images in differentiating benign and malignant thyroid nodules compared to senior and junior radiologists. A total of 1602 thyroid nodules from four centers across two countries (Iran and Malaysia) were included for the development and validation of AI models. From each original and expanded contour, which included the peritumoral region, 2060 handcrafted and 1024 deep radiomics features were extracted to assess the effectiveness of the peritumoral region in the AI diagnosis profile. The performance of four algorithms, namely, support vector machine with linear (SVM_lin) and radial basis function (SVM_RBF) kernels, logistic regression, and K-nearest neighbor, was evaluated. The diagnostic performance of the proposed AI model was compared with two radiologists based on the American Thyroid Association (ATA) and the Thyroid Imaging Reporting & Data System (TI-RADS™) guidelines to show the model's applicability in clinical routines. Thirty-five hand-crafted and 36 deep radiomics features were considered for model development. In the training step, SVM_RBF and SVM_lin showed the best results when rectangular contours 40% greater than the original contours were used for both hand-crafted and deep features. Ensemble-learning with SVM_RBF and SVM_lin obtained AUC of 0.954, 0.949, 0.932, and 0.921 in internal and external validations of the Iran cohort and Malaysia cohorts 1 and 2, respectively, and outperformed both radiologists. The proposed AI model trained on nodule+the peripheral region performed optimally in external validations and outperformed the radiologists using the ATA and TI-RADS guidelines.

Preoperative blood and CT-image nutritional indicators in short-term outcomes and machine learning survival framework of intrahepatic cholangiocarcinoma.

Wang M, Xie X, Lin J, Shen Z, Zou E, Wang Y, Liang X, Chen G, Yu H

pubmed logopapersJun 1 2025
Intrahepatic cholangiocarcinoma (iCCA) is aggressive with limited treatment and poor prognosis. Preoperative nutritional status assessment is crucial for predicting outcomes in patients. This study aimed to compare the predictive capabilities of preoperative blood like albumin-bilirubin (ALBI), controlling nutritional status (CONUT), prognostic nutritional index (PNI) and CT-imaging nutritional indicators like skeletal muscle index (SMI), visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), visceral to subcutaneous adipose tissue ratio (VSR) in iCCA patients undergoing curative hepatectomy. 290 iCCA patients from two centers were studied. Preoperative blood and CT-imaging nutritional indicators were evaluated. Short-term outcomes like complications, early recurrence (ER) and very early recurrence (VER), and overall survival (OS) as long-term outcome were assessed. Six machine learning (ML) models, including Gradient Boosting (GB) survival analysis, were developed to predict OS. Preoperative blood nutritional indicators significantly associated with postoperative complications. CT-imaging nutritional indicators show insignificant associations with short-term outcomes. All preoperative nutritional indicators were not effective in predicting early tumor recurrence. For long-term outcomes, ALBI, CONUT, PNI, SMI, and VSR were significantly associated with OS. Six ML survival models demonstrated strong and stable performance. GB model showed the best predictive performance (C-index: 0.755 in training cohorts, 0.714 in validation cohorts). Time-dependent ROC, calibration, and decision curve analysis confirmed its clinical value. Preoperative ALBI, CONUT, and PNI scores significantly correlated with complications but not ER. Four Image Nutritional Indicators were ineffective in evaluating short-term outcomes. Six ML models were developed based on nutritional and clinicopathological variables to predict iCCA prognosis.

Z-SSMNet: Zonal-aware Self-supervised Mesh Network for prostate cancer detection and diagnosis with Bi-parametric MRI.

Yuan Y, Ahn E, Feng D, Khadra M, Kim J

pubmed logopapersJun 1 2025
Bi-parametric magnetic resonance imaging (bpMRI) has become a pivotal modality in the detection and diagnosis of clinically significant prostate cancer (csPCa). Developing AI-based systems to identify csPCa using bpMRI can transform prostate cancer (PCa) management by improving efficiency and cost-effectiveness. However, current state-of-the-art methods using convolutional neural networks (CNNs) and Transformers are limited in learning in-plane and three-dimensional spatial information from anisotropic bpMRI. Their performances also depend on the availability of large, diverse, and well-annotated bpMRI datasets. To address these challenges, we propose the Zonal-aware Self-supervised Mesh Network (Z-SSMNet), which adaptively integrates multi-dimensional (2D/2.5D/3D) convolutions to learn dense intra-slice information and sparse inter-slice information of the anisotropic bpMRI in a balanced manner. We also propose a self-supervised learning (SSL) technique that effectively captures both intra-slice and inter-slice semantic information using large-scale unlabeled data. Furthermore, we constrain the network to focus on the zonal anatomical regions to improve the detection and diagnosis capability of csPCa. We conducted extensive experiments on the PI-CAI (Prostate Imaging - Cancer AI) dataset comprising 10000+ multi-center and multi-scanner data. Our Z-SSMNet excelled in both lesion-level detection (AP score of 0.633) and patient-level diagnosis (AUROC score of 0.881), securing the top position in the Open Development Phase of the PI-CAI challenge and maintained strong performance, achieving an AP score of 0.690 and an AUROC score of 0.909, and securing the second-place ranking in the Closed Testing Phase. These findings underscore the potential of AI-driven systems for csPCa diagnosis and management.

Deep learning enabled near-isotropic CAIPIRINHA VIBE in the nephrogenic phase improves image quality and renal lesion conspicuity.

Tan Q, Miao J, Nitschke L, Nickel MD, Lerchbaumer MH, Penzkofer T, Hofbauer S, Peters R, Hamm B, Geisel D, Wagner M, Walter-Rittel TC

pubmed logopapersJun 1 2025
Deep learning (DL) accelerated controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA)-volumetric interpolated breath-hold examination (VIBE), provides high spatial resolution T1-weighted imaging of the upper abdomen. We aimed to investigate whether DL-CAIPIRINHA-VIBE can improve image quality, vessel conspicuity, and lesion detectability compared to a standard CAIPIRINHA-VIBE in renal imaging at 3 Tesla. In this prospective study, 50 patients with 23 solid and 45 cystic renal lesions underwent MRI with clinical MR sequences, including standard CAIPIRINHA-VIBE and DL-CAIPIRINHA-VIBE sequences in the nephrographic phase at 3 Tesla. Two experienced radiologists independently evaluated both sequences and multiplanar reconstructions (MPR) of the sagittal and coronal planes for image quality with a Likert scale ranging from 1 to 5 (5 =best). Quantitative measurements including the size of the largest lesion and renal lesion contrast ratios were evaluated. DL-CAIPIRINHA-VIBE compared to standard CAIPIRINHA-VIBE showed significantly improved overall image quality, higher scores for renal border delineation, renal sinuses, vessels, adrenal glands, reduced motion artifacts and reduced perceived noise in nephrographic phase images (all p < 0.001). DL-CAIPIRINHA-VIBE with MPR showed superior lesion conspicuity and diagnostic confidence compared to standard CAIPIRINHA-VIBE. However, DL-CAIPIRINHA-VIBE presented a more synthetic appearance and more aliasing artifacts (p < 0.023). The mean size and signal intensity of renal lesions for DL-CAIPIRINHA-VIBE showed no significant differences compared to standard CAIPIRINHA-VIBE (p > 0.9). DL-CAIPIRINHA-VIBE is well suited for kidney imaging in the nephrographic phase, provides good image quality, improved delineation of anatomic structures and renal lesions.

TTGA U-Net: Two-stage two-stream graph attention U-Net for hepatic vessel connectivity enhancement.

Zhao Z, Li W, Ding X, Sun J, Xu LX

pubmed logopapersJun 1 2025
Accurate segmentation of hepatic vessels is pivotal for guiding preoperative planning in ablation surgery utilizing CT images. While non-contrast CT images often lack observable vessels, we focus on segmenting hepatic vessels within preoperative MR images. However, the vascular structures depicted in MR images are susceptible to noise, leading to challenges in connectivity. To address this issue, we propose a two-stage two-stream graph attention U-Net (i.e., TTGA U-Net) for hepatic vessel segmentation. Specifically, the first-stage network employs a CNN or Transformer-based architecture to preliminarily locate the vessel position, followed by an improved superpixel segmentation method to generate graph structures based on the positioning results. The second-stage network extracts graph node features through two parallel branches of a graph spatial attention network (GAT) and a graph channel attention network (GCT), employing self-attention mechanisms to balance these features. The graph pooling operation is utilized to aggregate node information. Moreover, we introduce a feature fusion module instead of skip connections to merge the two graph attention features, providing additional information to the decoder effectively. We establish a novel well-annotated high-quality MR image dataset for hepatic vessel segmentation and validate the vessel connectivity enhancement network's effectiveness on this dataset and the public dataset 3D IRCADB. Experimental results demonstrate that our TTGA U-Net outperforms state-of-the-art methods, notably enhancing vessel connectivity.

Association of Sarcopenia With Toxicity and Survival in Patients With Lung Cancer, a Multi-Institutional Study With External Dataset Validation.

Saraf A, He J, Shin KY, Weiss J, Awad MM, Gainor J, Kann BH, Christiani DC, Aerts HJWL, Mak RH

pubmed logopapersJun 1 2025
Sarcopenia is associated with worse survival in non-small cell lung cancer (NSCLC), but less studied in association with toxicity. Here, we investigated the association between imaging-assessed sarcopenia with toxicity in patients with NSCLC. We analyzed a "chemoradiation" cohort (n = 318) of patients with NSCLC treated with chemoradiation, and an external validation "chemo-surgery" cohort (n = 108) who were treated with chemotherapy and surgery from 2002 to 2013 at a different institution. A deep-learning pipeline utilized pretreatment computed tomography scans to estimate SM area at the third lumbar vertebral level. Sarcopenia was defined by dichotomizing SM index, (SM adjusted for height and sex). Primary endpoint was NCI CTCAE v5.0 grade 3 to 5 (G3-5) toxicity within 21-days of first chemotherapy cycle. Multivariable analyses (MVA) of toxicity endpoints with sarcopenia and baseline characteristics were performed by logistic regression, and overall survival (OS) was analyzed using Cox regression. Sarcopenia was identified in 36% and 36% of patients in the chemoradiation and chemo-surgery cohorts, respectively. On MVA, sarcopenia was associated with worse G3-5 toxicity in chemoradiation (HR 2.00, P < .01) and chemo-surgery cohorts (HR 2.95, P = .02). In the chemoradiation cohort, worse OS was associated with G3-5 toxicity (HR 1.42, P = .02) but not sarcopenia on MVA. In chemo-surgery cohort, worse OS was associated with sarcopenia (HR 2.03, P = .02) but not G3-5 toxicity on MVA. Sarcopenia, assessed by an automated deep-learning system, was associated with worse toxicity and survival outcomes in patients with NSCLC. Sarcopenia can be utilized to tailor treatment decisions to optimize adverse events and survival.

Non-invasive classification of non-neoplastic and neoplastic gallbladder polyps based on clinical imaging and ultrasound radiomics features: An interpretable machine learning model.

Dou M, Liu H, Tang Z, Quan L, Xu M, Wang F, Du Z, Geng Z, Li Q, Zhang D

pubmed logopapersJun 1 2025
Gallbladder (GB) adenomas, precancerous lesions for gallbladder carcinoma (GBC), lack reliable non-invasive tools for preoperative differentiation of neoplastic polyps from cholesterol polyps. This study aimed to evaluate an interpretable machine learning (ML) combined model for the precise differentiation of the pathological nature of gallbladder polyps (GPs). This study consecutively enrolled 744 patients from Xi'an Jiaotong University First Affiliated Hospital between January 2017 and December 2023 who were pathologically diagnosed postoperatively with cholesterol polyps, adenomas or T1-stage GBC. Radiomics features were extracted and selected, while clinical variables were subjected to univariate and multivariate logistic regression analyses to identify significant predictors of neoplastic polyps. A optimal ML-based radiomics model was developed, and separate clinical, US and combined models were constructed. Finally, SHapley Additive exPlanations (SHAP) was employed to visualize the classification process. The areas under the curves (AUCs) of the CatBoost-based radiomics model were 0.852 (95 % CI: 0.818-0.884) and 0.824 (95 % CI: 0.758-0.881) for the training and test sets, respectively. The combined model demonstrated the best performance with an improved AUC of 0.910 (95 % CI: 0.885-0.934) and 0.869 (95 % CI: 0.812-0.919), outperformed the clinical, radiomics, and US model (all P < 0.05), and reduced the rate of unnecessary cholecystectomies. SHAP analysis revealed that the polyp short diameter is a crucial independent risk factor in predicting the nature of the GPs. The ML-based combined model may be an effective non-invasive tool for improving the precision treatment of GPs, utilizing SHAP to visualize the classification process can enhance its clinical application.

Quantitative analysis of ureteral jets with dynamic magnetic resonance imaging and a deep-learning approach.

Wu M, Zeng W, Li Y, Ni C, Zhang J, Kong X, Zhang JL

pubmed logopapersJun 1 2025
To develop dynamic MRU protocol that focuses on the bladder to capture ureteral jets and to automatically estimate frequency and duration of ureteral jets from the dynamic images. Between February and July 2023, we collected 51 sets of dynamic MRU data from 5 healthy subjects. To capture the entire longitudinal trajectory of ureteral jets, we optimized orientation and thickness of the imaging slice for dynamic MRU, and developed a deep-learning method to automatically estimate frequency and duration of ureteral jets from the dynamic images. Among the 15 sets of images with different slice positioning, the positioning with slice thickness of 25 mm and orientation of 30° was optimal. Of the 36 sets of dynamic images acquired with the optimal protocol, 27 sets or 2529 images were used to train a U-Net model for automatically detecting the presence of ureteral jets. On the other 9 sets or 760 images, accuracy of the trained model was found to be 84.9 %. Based on the results of automatic detection, frequency of ureteral jet in each set of dynamic images was estimated as 8.0 ± 1.4 min<sup>-1</sup>, deviating from reference by -3.3 % ± 10.0 %; duration of each individual ureteral jet was estimated as 7.3 ± 2.8 s, deviating from reference by 2.4 % ± 32.2 %. The accumulative duration of ureteral jets estimated by the method correlated well (with coefficient of 0.936) with the bladder expansion recorded in the dynamic images. The proposed method was capable of quantitatively characterizing ureteral jets, potentially providing valuable information on functional status of ureteral peristalsis.
Page 84 of 99990 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.