Sort by:
Page 82 of 91901 results

Automated Real-time Assessment of Intracranial Hemorrhage Detection AI Using an Ensembled Monitoring Model (EMM)

Zhongnan Fang, Andrew Johnston, Lina Cheuy, Hye Sun Na, Magdalini Paschali, Camila Gonzalez, Bonnie A. Armstrong, Arogya Koirala, Derrick Laurel, Andrew Walker Campion, Michael Iv, Akshay S. Chaudhari, David B. Larson

arxiv logopreprintMay 16 2025
Artificial intelligence (AI) tools for radiology are commonly unmonitored once deployed. The lack of real-time case-by-case assessments of AI prediction confidence requires users to independently distinguish between trustworthy and unreliable AI predictions, which increases cognitive burden, reduces productivity, and potentially leads to misdiagnoses. To address these challenges, we introduce Ensembled Monitoring Model (EMM), a framework inspired by clinical consensus practices using multiple expert reviews. Designed specifically for black-box commercial AI products, EMM operates independently without requiring access to internal AI components or intermediate outputs, while still providing robust confidence measurements. Using intracranial hemorrhage detection as our test case on a large, diverse dataset of 2919 studies, we demonstrate that EMM successfully categorizes confidence in the AI-generated prediction, suggesting different actions and helping improve the overall performance of AI tools to ultimately reduce cognitive burden. Importantly, we provide key technical considerations and best practices for successfully translating EMM into clinical settings.

GOUHFI: a novel contrast- and resolution-agnostic segmentation tool for Ultra-High Field MRI

Marc-Antoine Fortin, Anne Louise Kristoffersen, Michael Staff Larsen, Laurent Lamalle, Ruediger Stirnberg, Paal Erik Goa

arxiv logopreprintMay 16 2025
Recently, Ultra-High Field MRI (UHF-MRI) has become more available and one of the best tools to study the brain. One common step in quantitative neuroimaging is the brain segmentation. However, the differences between UHF-MRI and 1.5-3T images are such that the automatic segmentation techniques optimized at these field strengths usually produce unsatisfactory segmentation results for UHF images. It has been particularly challenging to perform quantitative analyses as typically done with 1.5-3T data, considerably limiting the potential of UHF-MRI. Hence, we propose a novel Deep Learning (DL)-based segmentation technique called GOUHFI: Generalized and Optimized segmentation tool for Ultra-High Field Images, designed to segment UHF images of various contrasts and resolutions. For training, we used a total of 206 label maps from four datasets acquired at 3T, 7T and 9.4T. In contrast to most DL strategies, we used a previously proposed domain randomization approach, where synthetic images generated from the label maps were used for training a 3D U-Net. GOUHFI was tested on seven different datasets and compared to techniques like FastSurferVINN and CEREBRUM-7T. GOUHFI was able to the segment six contrasts and seven resolutions tested at 3T, 7T and 9.4T. Average Dice-Sorensen Similarity Coefficient (DSC) scores of 0.87, 0.84, 0.91 were computed against the ground truth segmentations at 3T, 7T and 9.4T. Moreover, GOUHFI demonstrated impressive resistance to the typical inhomogeneities observed at UHF-MRI, making it a new powerful segmentation tool that allows to apply the usual quantitative analysis pipelines also at UHF. Ultimately, GOUHFI is a promising new segmentation tool, being the first of its kind proposing a contrast- and resolution-agnostic alternative for UHF-MRI, making it the forthcoming alternative for neuroscientists working with UHF-MRI or even lower field strengths.

Lightweight hybrid transformers-based dyslexia detection using cross-modality data.

Sait ARW, Alkhurayyif Y

pubmed logopapersMay 16 2025
Early and precise diagnosis of dyslexia is crucial for implementing timely intervention to reduce its effects. Timely identification can improve the individual's academic and cognitive performance. Traditional dyslexia detection (DD) relies on lengthy, subjective, restricted behavioral evaluations and interviews. Due to the limitations, deep learning (DL) models have been explored to improve DD by analyzing complex neurological, behavioral, and visual data. DL architectures, including convolutional neural networks (CNNs) and vision transformers (ViTs), encounter challenges in extracting meaningful patterns from cross-modality data. The lack of model interpretability and limited computational power restricts these models' generalizability across diverse datasets. To overcome these limitations, we propose an innovative model for DD using magnetic resonance imaging (MRI), electroencephalography (EEG), and handwriting images. We introduce a model, leveraging hybrid transformer-based feature extraction, including SWIN-Linformer for MRI, LeViT-Performer for handwriting images, and graph transformer networks (GTNs) with multi-attention mechanisms for EEG data. A multi-modal attention-based feature fusion network was used to fuse the extracted features in order to guarantee the integration of key multi-modal features. We enhance Dartbooster XGBoost (DXB)-based classification using Bayesian optimization with Hyperband (BOHB) algorithm. In order to reduce computational overhead, we employ a quantization-aware training technique. The local interpretable model-agnostic explanations (LIME) technique and gradient-weighted class activation mapping (Grad-CAM) were adopted to enable model interpretability. Five public repositories were used to train and test the proposed model. The experimental outcomes demonstrated that the proposed model achieves an accuracy of 99.8% with limited computational overhead, outperforming baseline models. It sets a novel standard for DD, offering potential for early identification and timely intervention. In the future, advanced feature fusion and quantization techniques can be utilized to achieve optimal results in resource-constrained environments.

Research on Machine Learning Models Based on Cranial CT Scan for Assessing Prognosis of Emergency Brain Injury.

Qin J, Shen R, Fu J, Sun J

pubmed logopapersMay 16 2025
To evaluate the prognosis of patients with traumatic brain injury according to the Computed Tomography (CT) findings of skull fracture and cerebral parenchymal hemorrhage. Retrospectively collected data from adult patients who received non-surgical or surgical treatment after the first CT scan with craniocerebral injuries from January 2020 to August 2021. The radiomics features were extracted by Pyradiomics. Dimensionality reduction was then performed using the max relevance and min-redundancy algorithm (mRMR) and the least absolute shrinkage and selection operator (LASSO), with ten-fold cross-validation to select the best radiomics features. Three parsimonious machine learning classifiers, multinomial logistic regression (LR), a support vector machine (SVM), and a naive Bayes (Gaussian distribution), were used to construct radiomics models. A personalized emergency prognostic nomogram for cranial injuries was erected using a logistic regression model based on selected radiomic labels and patients' baseline information at emergency admission. The mRMR algorithm and the LASSO regression model finally extracted 22 top-ranked radiological features and based on these image histological features, the emergency brain injury prediction model was built with SVM, LG, and naive Bayesian classifiers, respectively. The SVM model showed the largest AUC area in training cohort for the three classifications, indicating that the SVM model is more stable and accurate. Moreover, a nomogram prediction model for GOS prognostic score in patients was constructed. We established a nomogram for predicting patients' prognosis through radiomic features and clinical characteristics, provides some data support and guidance for clinical prediction of patients' brain injury prognosis and intervention.

MRI-derived deep learning models for predicting 1p/19q codeletion status in glioma patients: a systematic review and meta-analysis of diagnostic test accuracy studies.

Ahmadzadeh AM, Broomand Lomer N, Ashoobi MA, Elyassirad D, Gheiji B, Vatanparast M, Rostami A, Abouei Mehrizi MA, Tabari A, Bathla G, Faghani S

pubmed logopapersMay 15 2025
We conducted a systematic review and meta-analysis to evaluate the performance of magnetic resonance imaging (MRI)-derived deep learning (DL) models in predicting 1p/19q codeletion status in glioma patients. The literature search was performed in four databases: PubMed, Web of Science, Embase, and Scopus. We included the studies that evaluated the performance of end-to-end DL models in predicting the status of glioma 1p/19q codeletion. The quality of the included studies was assessed by the Quality assessment of diagnostic accuracy studies-2 (QUADAS-2) METhodological RadiomICs Score (METRICS). We calculated diagnostic pooled estimates and heterogeneity was evaluated using I<sup>2</sup>. Subgroup analysis and sensitivity analysis were conducted to explore sources of heterogeneity. Publication bias was evaluated by Deeks' funnel plots. Twenty studies were included in the systematic review. Only two studies had a low quality. A meta-analysis of the ten studies demonstrated a pooled sensitivity of 0.77 (95% CI: 0.63-0.87), a specificity of 0.85 (95% CI: 0.74-0.92), a positive diagnostic likelihood ratio (DLR) of 5.34 (95% CI: 2.88-9.89), a negative DLR of 0.26 (95% CI: 0.16-0.45), a diagnostic odds ratio of 20.24 (95% CI: 8.19-50.02), and an area under the curve of 0.89 (95% CI: 0.86-0.91). The subgroup analysis identified a significant difference between groups depending on the segmentation method used. DL models can predict glioma 1p/19q codeletion status with high accuracy and may enhance non-invasive tumor characterization and aid in the selection of optimal therapeutic strategies.

MIMI-ONET: Multi-Modal image augmentation via Butterfly Optimized neural network for Huntington DiseaseDetection.

Amudaria S, Jawhar SJ

pubmed logopapersMay 15 2025
Huntington's disease (HD) is a chronic neurodegenerative ailment that affects cognitive decline, motor impairment, and psychiatric symptoms. However, the existing HD detection methods are struggle with limited annotated datasets that restricts their generalization performance. This research work proposes a novel MIMI-ONET for primary detection of HD using augmented multi-modal brain MRI images. The two-dimensional stationary wavelet transform (2DSWT) decomposes the MRI images into different frequency wavelet sub-bands. These sub-bands are enhanced with Contract Stretching Adaptive Histogram Equalization (CSAHE) and Multi-scale Adaptive Retinex (MSAR) by reducing the irrelevant distortions. The proposed MIMI-ONET introduces a Hepta Generative Adversarial Network (Hepta-GAN) to generates different noise-free HD images based on hepta azimuth angles (45°, 90°, 135°, 180°, 225°, 270°, 315°). Hepta-GAN incorporates Affine Estimation Module (AEM) to extract the multi-scale features using dilated convolutional layers for efficient HD image generation. Moreover, Hepta-GAN is normalized with Butterfly Optimization (BO) algorithm for enhancing augmentation performance by balancing the parameters. Finally, the generated images are given to Deep neural network (DNN) for the classification of normal control (NC), Adult-Onset HD (AHD) and Juvenile HD (JHD) cases. The ability of the proposed MIMI-ONET is evaluated with precision, specificity, f1 score, recall, and accuracy, PSNR and MSE. From the experimental results, the proposed MIMI-ONET attains the accuracy of 98.85% and reaches PSNR value of 48.05 based on the gathered Image-HD dataset. The proposed MIMI-ONET increases the overall accuracy of 9.96%, 1.85%, 5.91%, 13.80% and 13.5% for 3DCNN, KNN, FCN, RNN and ML framework respectively.

CLIF-Net: Intersection-guided Cross-view Fusion Network for Infection Detection from Cranial Ultrasound.

Yu M, Peterson MR, Burgoine K, Harbaugh T, Olupot-Olupot P, Gladstone M, Hagmann C, Cowan FM, Weeks A, Morton SU, Mulondo R, Mbabazi-Kabachelor E, Schiff SJ, Monga V

pubmed logopapersMay 15 2025
This paper addresses the problem of detecting possible serious bacterial infection (pSBI) of infancy, i.e. a clinical presentation consistent with bacterial sepsis in newborn infants using cranial ultrasound (cUS) images. The captured image set for each patient enables multiview imagery: coronal and sagittal, with geometric overlap. To exploit this geometric relation, we develop a new learning framework, called the intersection-guided Crossview Local- and Image-level Fusion Network (CLIF-Net). Our technique employs two distinct convolutional neural network branches to extract features from coronal and sagittal images with newly developed multi-level fusion blocks. Specifically, we leverage the spatial position of these images to locate the intersecting region. We then identify and enhance the semantic features from this region across multiple levels using cross-attention modules, facilitating the acquisition of mutually beneficial and more representative features from both views. The final enhanced features from the two views are then integrated and projected through the image-level fusion layer, outputting pSBI and non-pSBI class probabilities. We contend that our method of exploiting multi-view cUS images enables a first of its kind, robust 3D representation tailored for pSBI detection. When evaluated on a dataset of 302 cUS scans from Mbale Regional Referral Hospital in Uganda, CLIF-Net demonstrates substantially enhanced performance, surpassing the prevailing state-of-the-art infection detection techniques.

Machine learning prediction prior to onset of mild cognitive impairment using T1-weighted magnetic resonance imaging radiomic of the hippocampus.

Zhan S, Wang J, Dong J, Ji X, Huang L, Zhang Q, Xu D, Peng L, Wang X, Zhang Y, Liang S, Chen L

pubmed logopapersMay 15 2025
Early identification of individuals who progress from normal cognition (NC) to mild cognitive impairment (MCI) may help prevent cognitive decline. We aimed to build predictive models using radiomic features of the bilateral hippocampus in combination with scores from neuropsychological assessments. We utilized the Alzheimer's Disease Neuroimaging Initiative (ADNI) database to study 175 NC individuals, identifying 50 who progressed to MCI within seven years. Employing the Least Absolute Shrinkage and Selection Operator (LASSO) on T1-weighted images, we extracted and refined hippocampal features. Classification models, including Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), and light gradient boosters (LightGBM), were built based on significant neuropsychological scores. Model validation was conducted using 5-fold cross-validation, and hyperparameters were optimized with Scikit-learn, using an 80:20 data split for training and testing. We found that the LightGBM model achieved an area under the receiver operating characteristic (ROC) curve (AUC) value of 0.89 and an accuracy of 0.79 in the training set, and an AUC value of 0.80 and an accuracy of 0.74 in the test set. The study identified that T1-weighted magnetic resonance imaging radiomic of the hippocampus would be used to predict the progression to MCI at the normal cognitive stage, which might provide a new insight into clinical research.

Automatic head and neck tumor segmentation through deep learning and Bayesian optimization on three-dimensional medical images.

Douglas Z, Rahman A, Duggar WN, Wang H

pubmed logopapersMay 15 2025
Medical imaging constitutes critical information in the diagnostic and prognostic evaluation of patients, as it serves to uncover a broad spectrum of pathologies and deviances. Clinical practitioners who carry out medical image screening are primarily reliant on their knowledge and experience for disease diagnosis. Convolutional Neural Networks (CNNs) hold the potential to serve as a formidable decision-support tool in the realm of medical image analysis due to their high capacity to extract hierarchical features and effectuate direct classification and segmentation from image data. However, CNNs contain a myriad of hyperparameters and optimizing these hyperparameters poses a major obstacle to the effective implementation of CNNs. In this work, a two-phase Bayesian Optimization-derived Scheduling (BOS) approach is proposed for hyperparameter optimization for the head and cancerous tissue segmentation tasks. We proposed this two-phase BOS approach to incorporate both rapid convergences in the first training phase and slower (but without overfitting) improvements in the last training phase. Furthermore, we found that batch size and learning rate have a significant impact on the training process, but optimizing them separately can lead to sub-optimal hyperparameter combinations. Therefore, batch size and learning rate have been coupled as the batch size to learning rate (B2L) ratio and utilized in the optimization process to optimize both simultaneously. The optimized hyperparameters have been tested for a three-dimensional V-Net model with computed tomography (CT) and positron emission tomography (PET) scans to segment and classify cancerous and noncancerous tissues. The results of 10-fold cross-validation indicate that the optimal batch size to learning rate (B2L) ratio for each phase of the training method can improve the overall medical image segmentation performance.

Does Whole Brain Radiomics on Multimodal Neuroimaging Make Sense in Neuro-Oncology? A Proof of Concept Study.

Danilov G, Kalaeva D, Vikhrova N, Shugay S, Telysheva E, Goraynov S, Kosyrkova A, Pavlova G, Pronin I, Usachev D

pubmed logopapersMay 15 2025
Employing a whole-brain (WB) mask as a region of interest for extracting radiomic features is a feasible, albeit less common, approach in neuro-oncology research. This study aims to evaluate the relationship between WB radiomic features, derived from various neuroimaging modalities in patients with gliomas, and some key baseline characteristics of patients and tumors such as sex, histological tumor type, WHO Grade (2021), IDH1 mutation status, necrosis lesions, contrast enhancement, T/N peak value and metabolic tumor volume. Forty-one patients (average age 50 ± 15 years, 21 females and 20 males) with supratentorial glial tumors were enrolled in this study. A total of 38,720 radiomic features were extracted. Cluster analysis revealed that whole-brain images of biologically different tumors could be distinguished to a certain extent based on their imaging biomarkers. Machine learning capabilities to detect image properties like contrast-enhanced or necrotic zones validated radiomic features in objectifying image semantics. Furthermore, the predictive capability of imaging biomarkers in determining tumor histology, grade and mutation type underscores their diagnostic potential. Whole-brain radiomics using multimodal neuroimaging data appeared to be informative in neuro-oncology, making research in this area well justified.
Page 82 of 91901 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.