Sort by:
Page 81 of 81804 results

Principles for Developing a Large-Scale Point-of-Care Ultrasound Education Program: Insights from a Tertiary University Medical Center in Israel.

Dayan RR, Karni O, Shitrit IB, Gaufberg R, Ilan K, Fuchs L

pubmed logopapersJan 1 2025
Point-of-care ultrasound (POCUS) has transformed bedside diagnostics, yet its operator-dependent nature and lack of structured training remain significant barriers. To address these challenges, Ben Gurion University (BGU) developed a longitudinal six-year POCUS curriculum, emphasizing early integration, competency-based training, and scalable educational strategies to enhance medical education and patient care. To implement a structured and scalable POCUS curriculum that progressively builds technical proficiency, clinical judgment, and diagnostic accuracy, ensuring medical students effectively integrate POCUS into clinical practice. The curriculum incorporates hands-on training, self-directed learning, a structured spiral approach, and peer-led instruction. Early exposure in physics and anatomy courses establishes a foundation, progressing to bedside applications in clinical years. Advanced technologies, including AI-driven feedback and telemedicine, enhance skill retention and address faculty shortages by providing scalable solutions for ongoing assessment and feedback. Since its implementation in 2014, the program has trained hundreds of students, with longitudinal proficiency data from over 700 students. Internal studies have demonstrated that self-directed learning modules match or exceed in-person instruction for ultrasound skill acquisition, AI-driven feedback enhances image acquisition, and early clinical integration of POCUS positively influences patient care. Preliminary findings suggest that telemedicine-based instructor feedback improves cardiac ultrasound proficiency over time, and AI-assisted probe manipulation and self-learning with ultrasound simulators may further optimize training without requiring in-person instruction. A structured longitudinal approach ensures progressive skill acquisition while addressing faculty shortages and training limitations. Cost-effective strategies, such as peer-led instruction, AI feedback, and telemedicine, support skill development and sustainability. Emphasizing clinical integration ensures students learn to use POCUS as a targeted diagnostic adjunct rather than a broad screening tool, reinforcing its role as an essential skill in modern medical education.

Radiomic Model Associated with Tumor Microenvironment Predicts Immunotherapy Response and Prognosis in Patients with Locoregionally Advanced Nasopharyngeal Carcinoma.

Sun J, Wu X, Zhang X, Huang W, Zhong X, Li X, Xue K, Liu S, Chen X, Li W, Liu X, Shen H, You J, He W, Jin Z, Yu L, Li Y, Zhang S, Zhang B

pubmed logopapersJan 1 2025
<b>Background:</b> No robust biomarkers have been identified to predict the efficacy of programmed cell death protein 1 (PD-1) inhibitors in patients with locoregionally advanced nasopharyngeal carcinoma (LANPC). We aimed to develop radiomic models using pre-immunotherapy MRI to predict the response to PD-1 inhibitors and the patient prognosis. <b>Methods:</b> This study included 246 LANPC patients (training cohort, <i>n</i> = 117; external test cohort, <i>n</i> = 129) from 10 centers. The best-performing machine learning classifier was employed to create the radiomic models. A combined model was constructed by integrating clinical and radiomic data. A radiomic interpretability study was performed with whole slide images (WSIs) stained with hematoxylin and eosin (H&E) and immunohistochemistry (IHC). A total of 150 patient-level nuclear morphological features (NMFs) and 12 cell spatial distribution features (CSDFs) were extracted from WSIs. The correlation between the radiomic and pathological features was assessed using Spearman correlation analysis. <b>Results:</b> The radiomic model outperformed the clinical and combined models in predicting treatment response (area under the curve: 0.760 vs. 0.559 vs. 0.652). For overall survival estimation, the combined model performed comparably to the radiomic model but outperformed the clinical model (concordance index: 0.858 vs. 0.812 vs. 0.664). Six treatment response-related radiomic features correlated with 50 H&E-derived (146 pairs, |<i>r</i>|= 0.31 to 0.46) and 2 to 26 IHC-derived NMF, particularly for CD45RO (69 pairs, |<i>r</i>|= 0.31 to 0.48), CD8 (84, |<i>r</i>|= 0.30 to 0.59), PD-L1 (73, |<i>r</i>|= 0.32 to 0.48), and CD163 (53, |<i>r</i>| = 0.32 to 0.59). Eight prognostic radiomic features correlated with 11 H&E-derived (16 pairs, |<i>r</i>|= 0.48 to 0.61) and 2 to 31 IHC-derived NMF, particularly for PD-L1 (80 pairs, |<i>r</i>|= 0.44 to 0.64), CD45RO (65, |<i>r</i>|= 0.42 to 0.67), CD19 (35, |<i>r</i>|= 0.44 to 0.58), CD66b (61, |<i>r</i>| = 0.42 to 0.67), and FOXP3 (21, |<i>r</i>| = 0.41 to 0.71). In contrast, fewer CSDFs exhibited correlations with specific radiomic features. <b>Conclusion:</b> The radiomic model and combined model are feasible in predicting immunotherapy response and outcomes in LANPC patients. The radiology-pathology correlation suggests a potential biological basis for the predictive models.

SA-UMamba: Spatial attention convolutional neural networks for medical image segmentation.

Liu L, Huang Z, Wang S, Wang J, Liu B

pubmed logopapersJan 1 2025
Medical image segmentation plays an important role in medical diagnosis and treatment. Most recent medical image segmentation methods are based on a convolutional neural network (CNN) or Transformer model. However, CNN-based methods are limited by locality, whereas Transformer-based methods are constrained by the quadratic complexity of attention computations. Alternatively, the state-space model-based Mamba architecture has garnered widespread attention owing to its linear computational complexity for global modeling. However, Mamba and its variants are still limited in their ability to extract local receptive field features. To address this limitation, we propose a novel residual spatial state-space (RSSS) block that enhances spatial feature extraction by integrating global and local representations. The RSSS block combines the Mamba module for capturing global dependencies with a receptive field attention convolution (RFAC) module to extract location-sensitive local patterns. Furthermore, we introduce a residual adjust strategy to dynamically fuse global and local information, improving spatial expressiveness. Based on the RSSS block, we design a U-shaped SA-UMamba segmentation framework that effectively captures multi-scale spatial context across different stages. Experiments conducted on the Synapse, ISIC17, ISIC18 and CVC-ClinicDB datasets validate the segmentation performance of our proposed SA-UMamba framework.

Ground-truth-free deep learning approach for accelerated quantitative parameter mapping with memory efficient learning.

Fujita N, Yokosawa S, Shirai T, Terada Y

pubmed logopapersJan 1 2025
Quantitative MRI (qMRI) requires the acquisition of multiple images with parameter changes, resulting in longer measurement times than conventional imaging. Deep learning (DL) for image reconstruction has shown a significant reduction in acquisition time and improved image quality. In qMRI, where the image contrast varies between sequences, preparing large, fully-sampled (FS) datasets is challenging. Recently, methods that do not require FS data such as self-supervised learning (SSL) and zero-shot self-supervised learning (ZSSSL) have been proposed. Another challenge is the large GPU memory requirement for DL-based qMRI image reconstruction, owing to the simultaneous processing of multiple contrast images. In this context, Kellman et al. proposed memory-efficient learning (MEL) to save the GPU memory. This study evaluated SSL and ZSSSL frameworks with MEL to accelerate qMRI. Three experiments were conducted using the following sequences: 2D T2 mapping/MSME (Experiment 1), 3D T1 mapping/VFA-SPGR (Experiment 2), and 3D T2 mapping/DESS (Experiment 3). Each experiment used the undersampled k-space data under acceleration factors of 4, 8, and 12. The reconstructed maps were evaluated using quantitative metrics. In this study, we performed three qMRI reconstruction measurements and compared the performance of the SL- and GT-free learning methods, SSL and ZSSSL. Overall, the performances of SSL and ZSSSL were only slightly inferior to those of SL, even under high AF conditions. The quantitative errors in diagnostically important tissues (WM, GM, and meniscus) were small, demonstrating that SL and ZSSSL performed comparably. Additionally, by incorporating a GPU memory-saving implementation, we demonstrated that the network can operate on a GPU with a small memory (<8GB) with minimal speed reduction. This study demonstrates the effectiveness of memory-efficient GT-free learning methods using MEL to accelerate qMRI.
Page 81 of 81804 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.