Sort by:
Page 81 of 91901 results

FreqSelect: Frequency-Aware fMRI-to-Image Reconstruction

Junliang Ye, Lei Wang, Md Zakir Hossain

arxiv logopreprintMay 18 2025
Reconstructing natural images from functional magnetic resonance imaging (fMRI) data remains a core challenge in natural decoding due to the mismatch between the richness of visual stimuli and the noisy, low resolution nature of fMRI signals. While recent two-stage models, combining deep variational autoencoders (VAEs) with diffusion models, have advanced this task, they treat all spatial-frequency components of the input equally. This uniform treatment forces the model to extract meaning features and suppress irrelevant noise simultaneously, limiting its effectiveness. We introduce FreqSelect, a lightweight, adaptive module that selectively filters spatial-frequency bands before encoding. By dynamically emphasizing frequencies that are most predictive of brain activity and suppressing those that are uninformative, FreqSelect acts as a content-aware gate between image features and natural data. It integrates seamlessly into standard very deep VAE-diffusion pipelines and requires no additional supervision. Evaluated on the Natural Scenes dataset, FreqSelect consistently improves reconstruction quality across both low- and high-level metrics. Beyond performance gains, the learned frequency-selection patterns offer interpretable insights into how different visual frequencies are represented in the brain. Our method generalizes across subjects and scenes, and holds promise for extension to other neuroimaging modalities, offering a principled approach to enhancing both decoding accuracy and neuroscientific interpretability.

From Low Field to High Value: Robust Cortical Mapping from Low-Field MRI

Karthik Gopinath, Annabel Sorby-Adams, Jonathan W. Ramirez, Dina Zemlyanker, Jennifer Guo, David Hunt, Christine L. Mac Donald, C. Dirk Keene, Timothy Coalson, Matthew F. Glasser, David Van Essen, Matthew S. Rosen, Oula Puonti, W. Taylor Kimberly, Juan Eugenio Iglesias

arxiv logopreprintMay 18 2025
Three-dimensional reconstruction of cortical surfaces from MRI for morphometric analysis is fundamental for understanding brain structure. While high-field MRI (HF-MRI) is standard in research and clinical settings, its limited availability hinders widespread use. Low-field MRI (LF-MRI), particularly portable systems, offers a cost-effective and accessible alternative. However, existing cortical surface analysis tools are optimized for high-resolution HF-MRI and struggle with the lower signal-to-noise ratio and resolution of LF-MRI. In this work, we present a machine learning method for 3D reconstruction and analysis of portable LF-MRI across a range of contrasts and resolutions. Our method works "out of the box" without retraining. It uses a 3D U-Net trained on synthetic LF-MRI to predict signed distance functions of cortical surfaces, followed by geometric processing to ensure topological accuracy. We evaluate our method using paired HF/LF-MRI scans of the same subjects, showing that LF-MRI surface reconstruction accuracy depends on acquisition parameters, including contrast type (T1 vs T2), orientation (axial vs isotropic), and resolution. A 3mm isotropic T2-weighted scan acquired in under 4 minutes, yields strong agreement with HF-derived surfaces: surface area correlates at r=0.96, cortical parcellations reach Dice=0.98, and gray matter volume achieves r=0.93. Cortical thickness remains more challenging with correlations up to r=0.70, reflecting the difficulty of sub-mm precision with 3mm voxels. We further validate our method on challenging postmortem LF-MRI, demonstrating its robustness. Our method represents a step toward enabling cortical surface analysis on portable LF-MRI. Code is available at https://surfer.nmr.mgh.harvard.edu/fswiki/ReconAny

ML-Driven Alzheimer 's disease prediction: A deep ensemble modeling approach.

Jumaili MLF, Sonuç E

pubmed logopapersMay 17 2025
Alzheimer's disease (AD) is a progressive neurological disorder characterized by cognitive decline due to brain cell death, typically manifesting later in life.Early and accurate detection is critical for effective disease management and treatment. This study proposes an ensemble learning framework that combines five deep learning architectures (VGG16, VGG19, ResNet50, InceptionV3, and EfficientNetB7) to improve the accuracy of AD diagnosis. We use a comprehensive dataset of 3,714 MRI brain scans collected from specialized clinics in Iraq, categorized into three classes: NonDemented (834 images), MildDemented (1,824 images), and VeryDemented (1,056 images). The proposed voting ensemble model achieves a diagnostic accuracy of 99.32% on our dataset. The effectiveness of the model is further validated on two external datasets: OASIS (achieving 86.6% accuracy) and ADNI (achieving 99.5% accuracy), demonstrating competitive performance compared to existing approaches. Moreover, the proposed model exhibits high precision and recall across all stages of dementia, providing a reliable and robust tool for early AD detection. This study highlights the effectiveness of ensemble learning in AD diagnosis and shows promise for clinical applications.

Development of a deep-learning algorithm for etiological classification of subarachnoid hemorrhage using non-contrast CT scans.

Chen L, Wang X, Li Y, Bao Y, Wang S, Zhao X, Yuan M, Kang J, Sun S

pubmed logopapersMay 17 2025
This study aims to develop a deep learning algorithm for differentiating aneurysmal subarachnoid hemorrhage (aSAH) from non-aneurysmal subarachnoid hemorrhage (naSAH) using non-contrast computed tomography (NCCT) scans. This retrospective study included 618 patients diagnosed with SAH. The dataset was divided into a training and internal validation cohort (533 cases: aSAH = 305, naSAH = 228) and an external test cohort (85 cases: aSAH = 55, naSAH = 30). Hemorrhage regions were automatically segmented using a U-Net + + architecture. A ResNet-based deep learning model was trained to classify the etiology of SAH. The model achieved robust performance in distinguishing aSAH from naSAH. In the internal validation cohort, it yielded an average sensitivity of 0.898, specificity of 0.877, accuracy of 0.889, Matthews correlation coefficient (MCC) of 0.777, and an area under the curve (AUC) of 0.948 (95% CI: 0.929-0.967). In the external test cohort, the model demonstrated an average sensitivity of 0.891, specificity of 0.880, accuracy of 0.887, MCC of 0.761, and AUC of 0.914 (95% CI: 0.889-0.940), outperforming junior radiologists (average accuracy: 0.836; MCC: 0.660). The study presents a deep learning architecture capable of accurately identifying SAH etiology from NCCT scans. The model's high diagnostic performance highlights its potential to support rapid and precise clinical decision-making in emergency settings. Question Differentiating aneurysmal from naSAH is crucial for timely treatment, yet existing imaging modalities are not universally accessible or convenient for rapid diagnosis. Findings A ResNet-variant-based deep learning model utilizing non-contrast CT scans demonstrated high accuracy in classifying SAH etiology and enhanced junior radiologists' diagnostic performance. Clinical relevance AI-driven analysis of non-contrast CT scans provides a fast, cost-effective, and non-invasive solution for preoperative SAH diagnosis. This approach facilitates early identification of patients needing aneurysm surgery while minimizing unnecessary angiography in non-aneurysmal cases, enhancing clinical workflow efficiency.

Intracranial hemorrhage segmentation and classification framework in computer tomography images using deep learning techniques.

Ahmed SN, Prakasam P

pubmed logopapersMay 17 2025
By helping the neurosurgeon create treatment strategies that increase the survival rate, automotive diagnosis and CT (Computed Tomography) hemorrhage segmentation (CT) could be beneficial. Owing to the significance of medical image segmentation and the difficulties in carrying out human operations, a wide variety of automated techniques for this purpose have been developed, with a primary focus on particular image modalities. In this paper, MUNet (Multiclass-UNet) based Intracranial Hemorrhage Segmentation and Classification Framework (IHSNet) is proposed to successfully segment multiple kinds of hemorrhages while the fully connected layers help in classifying the type of hemorrhages.The segmentation accuracy rates for hemorrhages are 98.53% with classification accuracy stands at 98.71% when using the suggested approach. There is potential for this suggested approach to be expanded in the future to handle further medical picture segmentation issues. Intraventricular hemorrhage (IVH), Epidural hemorrhage (EDH), Intraparenchymal hemorrhage (IPH), Subdural hemorrhage (SDH), Subarachnoid hemorrhage (SAH) are the subtypes involved in intracranial hemorrhage (ICH) whose DICE coefficients are 0.77, 0.84, 0.64, 0.80, and 0.92 respectively.The proposed method has great deal of clinical application potential for computer-aided diagnostics, which can be expanded in the future to handle further medical picture segmentation and to tackle with the involved issues.

Brain metabolic imaging-based model identifies cognitive stability in prodromal Alzheimer's disease.

Perron J, Scramstad C, Ko JH

pubmed logopapersMay 17 2025
The recent approval of anti-amyloid pharmaceuticals for the treatment of Alzheimer's disease (AD) has created a pressing need for the ability to accurately identify optimal candidates for anti-amyloid therapy, specifically those with evidence for incipient cognitive decline, since patients with mild cognitive impairment (MCI) may remain stable for several years even with positive AD biomarkers. Using fluorodeoxyglucose PET and biomarker data from 594 ADNI patients, a neural network ensemble was trained to forecast cognition from MCI diagnostic baseline. Training data comprised PET studies of patients with biological AD. The ensemble discriminated between progressive and stable prodromal subjects (MCI with positive amyloid and tau) at baseline with 88.6% area-under-curve, 88.6% (39/44) accuracy, 73.7% (14/19) sensitivity and 100% (25/25) specificity in the test set. It also correctly classified all other test subjects (healthy or AD continuum subjects across the cognitive spectrum) with 86.4% accuracy (206/239), 77.4% sensitivity (33/42) and 88.23% (165/197) specificity. By identifying patients with prodromal AD who will not progress to dementia, our model could significantly reduce overall societal burden and cost if implemented as a screening tool. The model's high positive predictive value in the prodromal test set makes it a practical means for selecting candidates for anti-amyloid therapy and trials.

An integrated deep learning model for early and multi-class diagnosis of Alzheimer's disease from MRI scans.

Vinukonda ER, Jagadesh BN

pubmed logopapersMay 17 2025
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that severely affects memory, behavior, and cognitive function. Early and accurate diagnosis is crucial for effective intervention, yet detecting subtle changes in the early stages remains a challenge. In this study, we propose a hybrid deep learning-based multi-class classification system for AD using magnetic resonance imaging (MRI). The proposed approach integrates an improved DeepLabV3+ (IDeepLabV3+) model for lesion segmentation, followed by feature extraction using the LeNet-5 model. A novel feature selection method based on average correlation and error probability is employed to enhance classification efficiency. Finally, an Enhanced ResNext (EResNext) model is used to classify AD into four stages: non-dementia (ND), very mild dementia (VMD), mild dementia (MD), and moderate dementia (MOD). The proposed model achieves an accuracy of 98.12%, demonstrating its superior performance over existing methods. The area under the ROC curve (AUC) further validates its effectiveness, with the highest score of 0.97 for moderate dementia. This study highlights the potential of hybrid deep learning models in improving early AD detection and staging, contributing to more accurate clinical diagnosis and better patient care.

A self-supervised multimodal deep learning approach to differentiate post-radiotherapy progression from pseudoprogression in glioblastoma.

Gomaa A, Huang Y, Stephan P, Breininger K, Frey B, Dörfler A, Schnell O, Delev D, Coras R, Donaubauer AJ, Schmitter C, Stritzelberger J, Semrau S, Maier A, Bayer S, Schönecker S, Heiland DH, Hau P, Gaipl US, Bert C, Fietkau R, Schmidt MA, Putz F

pubmed logopapersMay 17 2025
Accurate differentiation of pseudoprogression (PsP) from True Progression (TP) following radiotherapy (RT) in glioblastoma patients is crucial for optimal treatment planning. However, this task remains challenging due to the overlapping imaging characteristics of PsP and TP. This study therefore proposes a multimodal deep-learning approach utilizing complementary information from routine anatomical MR images, clinical parameters, and RT treatment planning information for improved predictive accuracy. The approach utilizes a self-supervised Vision Transformer (ViT) to encode multi-sequence MR brain volumes to effectively capture both global and local context from the high dimensional input. The encoder is trained in a self-supervised upstream task on unlabeled glioma MRI datasets from the open BraTS2021, UPenn-GBM, and UCSF-PDGM datasets (n = 2317 MRI studies) to generate compact, clinically relevant representations from FLAIR and T1 post-contrast sequences. These encoded MR inputs are then integrated with clinical data and RT treatment planning information through guided cross-modal attention, improving progression classification accuracy. This work was developed using two datasets from different centers: the Burdenko Glioblastoma Progression Dataset (n = 59) for training and validation, and the GlioCMV progression dataset from the University Hospital Erlangen (UKER) (n = 20) for testing. The proposed method achieved competitive performance, with an AUC of 75.3%, outperforming the current state-of-the-art data-driven approaches. Importantly, the proposed approach relies solely on readily available anatomical MRI sequences, clinical data, and RT treatment planning information, enhancing its clinical feasibility. The proposed approach addresses the challenge of limited data availability for PsP and TP differentiation and could allow for improved clinical decision-making and optimized treatment plans for glioblastoma patients.

Evaluation of synthetic images derived from a neural network in pediatric brain magnetic resonance imaging.

Nagaraj UD, Meineke J, Sriwastwa A, Tkach JA, Leach JL, Doneva M

pubmed logopapersMay 17 2025
Synthetic MRI (SyMRI) is a technique used to estimate tissue properties and generate multiple MR sequence contrasts from a single acquisition. However, image quality can be suboptimal. To evaluate a neural network approach using artificial intelligence-based direct contrast synthesis (AI-DCS) of the multi-contrast weighted images to improve image quality. This prospective, IRB approved study enrolled 50 pediatric patients undergoing clinical brain MRI. In addition to the standard of care (SOC) clinical protocol, 2D multi-delay multi-echo (MDME) sequence was obtained. SOC 3D T1-weighted (T1W), 2D T2-weighted (T2W) and 2D T2W fluid-attenuated inversion recovery (FLAIR) images from 35 patients were used to train a neural network generating synthetic T1W, T2W, and FLAIR images. Quantitative analysis of grey matter (GM) and white matter (WM) apparent signal to noise (aSNR) and grey-white matter (GWM) apparent contrast to noise (aCNR) ratios was performed. 8 patients were evaluated. When compared to SyMRI, T1W AI-DCS had better overall image quality, reduced noise/artifacts, and better subjective SNR in 100 % (16/16) of evaluations. When compared to SyMRI, T2W AI-DCS overall image quality and diagnostic confidence was better in 93.8 % (15/16) and 87.5 % (14/16) of evaluations, respectively. When compared to SyMRI, FLAIR AI-DCS was better in 93.8 % (15/16) of evaluations in overall image quality and in 100 % (16/16) of evaluations for noise/artifacts and subjective SNR. Quantitative analysis revealed higher WM aSNR compared with SyMRI (p < 0.05) for T1W, T2W and FLAIR. AI-DCS demonstrates better overall image quality than SyMRI on T1W, T2W and FLAIR.

A Robust Automated Segmentation Method for White Matter Hyperintensity of Vascular-origin.

He H, Jiang J, Peng S, He C, Sun T, Fan F, Song H, Sun D, Xu Z, Wu S, Lu D, Zhang J

pubmed logopapersMay 17 2025
White matter hyperintensity (WMH) is a primary manifestation of small vessel disease (SVD), leading to vascular cognitive impairment and other disorders. Accurate WMH quantification is vital for diagnosis and prognosis, but current automatic segmentation methods often fall short, especially across different datasets. The aims of this study are to develop and validate a robust deep learning segmentation method for WMH of vascular-origin. In this study, we developed a transformer-based method for the automatic segmentation of vascular-origin WMH using both 3D T1 and 3D T2-FLAIR images. Our initial dataset comprised 126 participants with varying WMH burdens due to SVD, each with manually segmented WMH masks used for training and testing. External validation was performed on two independent datasets: the WMH Segmentation Challenge 2017 dataset (170 subjects) and an in-house vascular risk factor dataset (70 subjects), which included scans acquired on eight different MRI systems at field strengths of 1.5T, 3T, and 5T. This approach enabled a comprehensive assessment of the method's generalizability across diverse imaging conditions. We further compared our method against LGA, LPA, BIANCA, UBO-detector and TrUE-Net in optimized settings. Our method consistently outperformed others, achieving a median Dice coefficient of 0.78±0.09 in our primary dataset, 0.72±0.15 in the external dataset 1, and 0.72±0.14 in the external dataset 2. The relative volume errors were 0.15±0.14, 0.50±0.86, and 0.47±1.02, respectively. The true positive rates were 0.81±0.13, 0.92±0.09, and 0.92±0.12, while the false positive rates were 0.20±0.09, 0.40±0.18, and 0.40±0.19. None of the external validation datasets were used for model training; instead, they comprise previously unseen MRI scans acquired from different scanners and protocols. This setup closely reflects real-world clinical scenarios and further demonstrates the robustness and generalizability of our model across diverse MRI systems and acquisition settings. As such, the proposed method provides a reliable solution for WMH segmentation in large-scale cohort studies.
Page 81 of 91901 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.