Sort by:
Page 8 of 91901 results

DDTracking: A Deep Generative Framework for Diffusion MRI Tractography with Streamline Local-Global Spatiotemporal Modeling

Yijie Li, Wei Zhang, Xi Zhu, Ye Wu, Yogesh Rathi, Lauren J. O'Donnell, Fan Zhang

arxiv logopreprintAug 6 2025
This paper presents DDTracking, a novel deep generative framework for diffusion MRI tractography that formulates streamline propagation as a conditional denoising diffusion process. In DDTracking, we introduce a dual-pathway encoding network that jointly models local spatial encoding (capturing fine-scale structural details at each streamline point) and global temporal dependencies (ensuring long-range consistency across the entire streamline). Furthermore, we design a conditional diffusion model module, which leverages the learned local and global embeddings to predict streamline propagation orientations for tractography in an end-to-end trainable manner. We conduct a comprehensive evaluation across diverse, independently acquired dMRI datasets, including both synthetic and clinical data. Experiments on two well-established benchmarks with ground truth (ISMRM Challenge and TractoInferno) demonstrate that DDTracking largely outperforms current state-of-the-art tractography methods. Furthermore, our results highlight DDTracking's strong generalizability across heterogeneous datasets, spanning varying health conditions, age groups, imaging protocols, and scanner types. Collectively, DDTracking offers anatomically plausible and robust tractography, presenting a scalable, adaptable, and end-to-end learnable solution for broad dMRI applications. Code is available at: https://github.com/yishengpoxiao/DDtracking.git

Altered gray matter morphometry in psychogenic erectile dysfunction patients: A Surface-based morphometry study.

Tian Z, Ma Z, Dou B, Huang X, Li G, Chang D, Yin T, Zhang P

pubmed logopapersAug 6 2025
Psychogenic erectile dysfunction (pED) is a prevalent male sexual dysfunction lacking organic etiology. Endeavors have been made in previous studies to disclose the brain pathological mechanisms of pED. However, the cortical morphological characteristics in pED patients remained largely unknown. This study enrolled 50 pED patients and 50 healthy controls (HC). The surface-based morphometry (SBM) analysis was conducted, and the between-group comparisons of the four cortical morphological parameters, including the cortical thickness, sulcus depth, gyrification index, and fractal dimension, were performed to investigate the cortical morphological alterations in pED patients, followed by correlation analysis between clinical data and SBM metrics. Furthermore, a classifier was developed based on a support vector classification algorithm and cortical morphological features to explore the feasibility of discriminating between pED patients and HC at an individual level. The results demonstrated that pED patients manifested consistent alteration in cortical morphology cross metrics in the orbitofrontal cortex, anterior and middle cingulate cortex, dorsolateral prefrontal cortex, and precentral gyrus, which were significantly correlated with the clinical symptoms in pED patients. Additionally, the classifier built based on 11 cortical morphological features achieved an accuracy of 82% in discriminating pED patients from HC. The current study provided new evidence of cortical morphological aberrations in pED patients, which deepened our understanding of the central pathology pattern of pED and was expected to facilitate the objective diagnosis of pED and the development of neuromodulation techniques targeting the alterations above.

Conditional Fetal Brain Atlas Learning for Automatic Tissue Segmentation

Johannes Tischer, Patric Kienast, Marlene Stümpflen, Gregor Kasprian, Georg Langs, Roxane Licandro

arxiv logopreprintAug 6 2025
Magnetic Resonance Imaging (MRI) of the fetal brain has become a key tool for studying brain development in vivo. Yet, its assessment remains challenging due to variability in brain maturation, imaging protocols, and uncertain estimates of Gestational Age (GA). To overcome these, brain atlases provide a standardized reference framework that facilitates objective evaluation and comparison across subjects by aligning the atlas and subjects in a common coordinate system. In this work, we introduce a novel deep-learning framework for generating continuous, age-specific fetal brain atlases for real-time fetal brain tissue segmentation. The framework combines a direct registration model with a conditional discriminator. Trained on a curated dataset of 219 neurotypical fetal MRIs spanning from 21 to 37 weeks of gestation. The method achieves high registration accuracy, captures dynamic anatomical changes with sharp structural detail, and robust segmentation performance with an average Dice Similarity Coefficient (DSC) of 86.3% across six brain tissues. Furthermore, volumetric analysis of the generated atlases reveals detailed neurotypical growth trajectories, providing valuable insights into the maturation of the fetal brain. This approach enables individualized developmental assessment with minimal pre-processing and real-time performance, supporting both research and clinical applications. The model code is available at https://github.com/cirmuw/fetal-brain-atlas

Dynamic neural network modulation associated with rumination in major depressive disorder: a prospective observational comparative analysis of cognitive behavioral therapy and pharmacotherapy.

Katayama N, Shinagawa K, Hirano J, Kobayashi Y, Nakagawa A, Umeda S, Kamiya K, Tajima M, Amano M, Nogami W, Ihara S, Noda S, Terasawa Y, Kikuchi T, Mimura M, Uchida H

pubmed logopapersAug 6 2025
Cognitive behavioral therapy (CBT) and pharmacotherapy are primary treatments for major depressive disorder (MDD). However, their differential effects on the neural networks associated with rumination, or repetitive negative thinking, remain poorly understood. This study included 135 participants, whose rumination severity was measured using the rumination response scale (RRS) and whose resting brain activity was measured using functional magnetic resonance imaging (fMRI) at baseline and after 16 weeks. MDD patients received either standard CBT based on Beck's manual (n = 28) or pharmacotherapy (n = 32). Using a hidden Markov model, we observed that MDD patients exhibited increased activity in the default mode network (DMN) and decreased occupancies in the sensorimotor and central executive networks (CEN). The DMN occurrence rate correlated positively with rumination severity. CBT, while not specifically designed to target rumination, reduced DMN occurrence rate and facilitated transitions toward a CEN-dominant brain state as part of broader therapeutic effects. Pharmacotherapy shifted DMN activity to the posterior region of the brain. These findings suggest that CBT and pharmacotherapy modulate brain network dynamics related to rumination through distinct therapeutic pathways.

Pyramidal attention-based T network for brain tumor classification: a comprehensive analysis of transfer learning approaches for clinically reliable and reliable AI hybrid approaches.

Banerjee T, Chhabra P, Kumar M, Kumar A, Abhishek K, Shah MA

pubmed logopapersAug 6 2025
Brain tumors are a significant challenge to human health as they impair the proper functioning of the brain and the general quality of life, thus requiring clinical intervention through early and accurate diagnosis. Although current state-of-the-art deep learning methods have achieved remarkable progress, there is still a gap in the representation learning of tumor-specific spatial characteristics and the robustness of the classification model on heterogeneous data. In this paper, we introduce a novel Pyramidal Attention-Based bi-partitioned T Network (PABT-Net) that combines the hierarchical pyramidal attention mechanism and T-block based bi-partitioned feature extraction, and a self-convolutional dilated neural classifier as the final task. Such an architecture increases the discriminability of the space and decreases the false forecasting by adaptively focusing on informative areas in brain MRI images. The model was thoroughly tested on three benchmark datasets, Figshare Brain Tumor Dataset, Sartaj Brain MRI Dataset, and Br35H Brain Tumor Dataset, containing 7023 images labeled in four tumor classes: glioma, meningioma, no tumor, and pituitary tumor. It attained an overall classification accuracy of 99.12%, a mean cross-validation accuracy of 98.77%, a Jaccard similarity index of 0.986, and a Cohen's Kappa value of 0.987, indicating superb generalization and clinical stability. The model's effectiveness is also confirmed by tumor-wise classification accuracies: 96.75%, 98.46%, and 99.57% in glioma, meningioma, and pituitary tumors, respectively. Comparative experiments with the state-of-the-art models, including VGG19, MobileNet, and NASNet, were carried out, and ablation studies proved the effectiveness of NASNet incorporation. To capture more prominent spatial-temporal patterns, we investigated hybrid networks, including NASNet with ANN, CNN, LSTM, and CNN-LSTM variants. The framework implements a strict nine-fold cross-validation procedure. It integrates a broad range of measures in its evaluation, including precision, recall, specificity, F1-score, AUC, confusion matrices, and the ROC analysis, consistent across distributions. In general, the PABT-Net model has high potential to be a clinically deployable, interpretable, state-of-the-art automated brain tumor classification model.

Automated Deep Learning-based Segmentation of the Dentate Nucleus Using Quantitative Susceptibility Mapping MRI.

Shiraishi DH, Saha S, Adanyeguh IM, Cocozza S, Corben LA, Deistung A, Delatycki MB, Dogan I, Gaetz W, Georgiou-Karistianis N, Graf S, Grisoli M, Henry PG, Jarola GM, Joers JM, Langkammer C, Lenglet C, Li J, Lobo CC, Lock EF, Lynch DR, Mareci TH, Martinez ARM, Monti S, Nigri A, Pandolfo M, Reetz K, Roberts TP, Romanzetti S, Rudko DA, Scaravilli A, Schulz JB, Subramony SH, Timmann D, França MC, Harding IH, Rezende TJR

pubmed logopapersAug 6 2025
<i>"Just Accepted" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Purpose To develop a dentate nucleus (DN) segmentation tool using deep learning (DL) applied to brain MRI-based quantitative susceptibility mapping (QSM) images. Materials and Methods Brain QSM images from healthy controls and individuals with cerebellar ataxia or multiple sclerosis were collected from nine different datasets (2016-2023) worldwide for this retrospective study (ClinicalTrials.gov Identifier: NCT04349514). Manual delineation of the DN was performed by experienced raters. Automated segmentation performance was evaluated against manual reference segmentations following training with several DL architectures. A two-step approach was used, consisting of a localization model followed by DN segmentation. Performance metrics included intraclass correlation coefficient (ICC), Dice score, and Pearson correlation coefficient. Results The training and testing datasets comprised 328 individuals (age range, 11-64 years; 171 female), including 141 healthy individuals and 187 with cerebellar ataxia or multiple sclerosis. The manual tracing protocol produced reference standards with high intrarater (average ICC 0.91) and interrater reliability (average ICC 0.78). Initial DL architecture exploration indicated that the nnU-Net framework performed best. The two-step localization plus segmentation pipeline achieved a Dice score of 0.90 ± 0.03 and 0.89 ± 0.04 for left and right DN segmentation, respectively. In external testing, the proposed algorithm outperformed the current leading automated tool (mean Dice scores for left and right DN: 0.86 ± 0.04 vs 0.57 ± 0.22, <i>P</i> < .001; 0.84 ± 0.07 vs 0.58 ± 0.24, <i>P</i> < .001). The model demonstrated generalizability across datasets unseen during the training step, with automated segmentations showing high correlation with manual annotations (left DN: r = 0.74; <i>P</i> < .001; right DN: r = 0.48; <i>P</i> = .03). Conclusion The proposed model accurately and efficiently segmented the DN from brain QSM images. The model is publicly available (https://github.com/art2mri/DentateSeg). ©RSNA, 2025.

Machine Learning-Based Reconstruction of 2D MRI for Quantitative Morphometry in Epilepsy

Ratcliffe, C., Taylor, P. N., de Bezenac, C., Das, K., Biswas, S., Marson, A., Keller, S. S.

medrxiv logopreprintAug 6 2025
IntroductionStructural neuroimaging analyses require research quality images, acquired with costly MRI acquisitions. Isotropic (3D-T1) images are desirable for quantitative analyses, however a routine compromise in the clinical setting is to acquire anisotropic (2D-T1) analogues for qualitative visual inspection. ML (Machine learning-based) software have shown promise in addressing some of the limitations of 2D-T1 scans in research applications, yet their efficacy in quantitative research is generally poorly understood. Pathology-related abnormalities of the subcortical structures have previously been identified in idiopathic generalised epilepsy (IGE), which have been overlooked based on visual inspection, through the use of quantitative morphometric analyses. As such, IGE biomarkers present a suitable model in which to evaluate the applicability of image preprocessing methods. This study therefore explores subcortical structural biomarkers of IGE, first in our silver standard 3D-T1 scans, then in 2D-T1 scans that were either untransformed, resampled using a classical interpolation approach, or synthesised with a resolution and contrast agnostic ML model (the latter of which is compared to a separate model). Methods2D-T1 and 3D-T1 MRI scans were acquired during the same scanning session for 33 individuals with drug-responsive IGE (age mean 32.16 {+/-} SD = 14.20, male n = 14) and 42 individuals with drug-resistant IGE (31.76 {+/-} 11.12, 17), all diagnosed at the Walton Centre NHS Foundation Trust Liverpool, alongside 39 age- and sex-matched healthy controls (32.32 {+/-} 8.65, 16). The untransformed 2D-T1 scans were resampled into isotropic images using NiBabel (res-T1), and preprocessed into synthetic isotropic images using SynthSR (syn-T1). For the 3D-T1, 2D-T1, res-T1, and syn-T1 images, the recon-all command from FreeSurfer 8.0.0 was used to create parcellations of 174 anatomical regions (equivalent to the 174 regional parcellations provided as part of the DL+DiReCT pipeline), defined by the aseg and Destrieux atlases, and FSL run_first_all was used to segment subcortical surface shapes. The new ML FreeSurfer pipeline, recon-all-clinical, was also tested in the 2D-T1, 3D-T1, and res-T1 images. As a model comparison for SynthSR, the DL+DiReCT pipeline was used to provide segmentations of the 2D-T1 and res-T1 images, including estimates of regional volume and thickness. Spatial overlap and intraclass correlations between the morphometrics of the eight resulting parcellations were first determined, then subcortical surface shape abnormalities associated with IGE were identified by comparing the FSL run_first_all outputs of patients with controls. ResultsWhen standardised to the metrics derived from the 3D-T1 scans, cortical volume and thickness estimates trended lower for the 2D-T1, res-T1, syn-T1, and DL+DiReCT outputs, whereas subcortical volume estimates were more coherent. Dice coefficients revealed an acceptable spatial similarity between the cortices of the 3D-T1 scans and the other images overall, and was higher in the subcortical structures. Intraclass correlation coefficients were consistently lowest when metrics were computed for model-derived inputs, and estimates of thickness were less similar to the ground truth than those of volume. For the people with epilepsy, the 3D-T1 scans showed significant surface deflations across various subcortical structures when compared to healthy controls. Analysis of the 2D-T1 scans enabled the reliable detection of a subset of subcortical abnormalities, whereas analyses of the res-T1 and syn-T1 images were more prone to false-positive results. ConclusionsResampling and ML image synthesis methods do not currently attenuate partial volume effects resulting from low through plane resolution in anisotropic MRI scans, instead quantitative analyses using 2D-T1 scans should be interpreted with caution, and researchers should consider the potential implications of preprocessing. The recon-all-clinical pipeline is promising, but requires further evaluation, especially when considered as an alternative to the classical pipeline. Key PointsO_LISurface deviations indicative of regional atrophy and hypertrophy were identified in people with idiopathic generalised epilepsy. C_LIO_LIPartial volume effects are likely to attenuate subtle morphometric abnormalities, increasing the likelihood of erroneous inference. C_LIO_LIPriors in synthetic image creation models may render them insensitive to subtle biomarkers. C_LIO_LIResampling and machine-learning based image synthesis are not currently replacements for research quality acquisitions in quantitative MRI research. C_LIO_LIThe results of studies using synthetic images should be interpreted in a separate context to those using untransformed data. C_LI

Predicting language outcome after stroke using machine learning: in search of the big data benefit.

Saranti M, Neville D, White A, Rotshtein P, Hope TMH, Price CJ, Bowman H

pubmed logopapersAug 6 2025
Accurate prediction of post-stroke language outcomes using machine learning offers the potential to enhance clinical treatment and rehabilitation for aphasic patients. This study of 758 English speaking stroke patients from the PLORAS project explores the impact of sample size on the performance of logistic regression and a deep learning (ResNet-18) model in predicting language outcomes from neuroimaging and impairment-relevant tabular data. We assessed the performance of both models on two key language tasks from the Comprehensive Aphasia Test: Spoken Picture Description and Naming, using a learning curve approach. Contrary to expectations, the simpler logistic regression model performed comparably or better than the deep learning model (with overlapping confidence intervals), with both models showing an accuracy plateau around 80% for sample sizes larger than 300 patients. Principal Component Analysis revealed that the dimensionality of the neuroimaging data could be reduced to as few as 20 (or even 2) dominant components without significant loss in accuracy, suggesting that classification may be driven by simple patterns such as lesion size. The study highlights both the potential limitations of current dataset size in achieving further accuracy gains and the need for larger datasets to capture more complex patterns, as some of our results indicate that we might not have reached an absolute classification performance ceiling. Overall, these findings provide insights into the practical use of machine learning for predicting aphasia outcomes and the potential benefits of much larger datasets in enhancing model performance.

Clinical information prompt-driven retinal fundus image for brain health evaluation.

Tong N, Hui Y, Gou SP, Chen LX, Wang XH, Chen SH, Li J, Li XS, Wu YT, Wu SL, Wang ZC, Sun J, Lv H

pubmed logopapersAug 6 2025
Brain volume measurement serves as a critical approach for assessing brain health status. Considering the close biological connection between the eyes and brain, this study aims to investigate the feasibility of estimating brain volume through retinal fundus imaging integrated with clinical metadata, and to offer a cost-effective approach for assessing brain health. Based on clinical information, retinal fundus images, and neuroimaging data derived from a multicenter, population-based cohort study, the KaiLuan Study, we proposed a cross-modal correlation representation (CMCR) network to elucidate the intricate co-degenerative relationships between the eyes and brain for 755 subjects. Specifically, individual clinical information, which has been followed up for as long as 12 years, was encoded as a prompt to enhance the accuracy of brain volume estimation. Independent internal validation and external validation were performed to assess the robustness of the proposed model. Root mean square error (RMSE), peak signal-to-noise ratio (PSNR), and structural similarity index measure (SSIM) metrics were employed to quantitatively evaluate the quality of synthetic brain images derived from retinal imaging data. The proposed framework yielded average RMSE, PSNR, and SSIM values of 98.23, 35.78 dB, and 0.64, respectively, which significantly outperformed 5 other methods: multi-channel Variational Autoencoder (mcVAE), Pixel-to-Pixel (Pixel2pixel), transformer-based U-Net (TransUNet), multi-scale transformer network (MT-Net), and residual vision transformer (ResViT). The two- (2D) and three-dimensional (3D) visualization results showed that the shape and texture of the synthetic brain images generated by the proposed method most closely resembled those of actual brain images. Thus, the CMCR framework accurately captured the latent structural correlations between the fundus and the brain. The average difference between predicted and actual brain volumes was 61.36 cm<sup>3</sup>, with a relative error of 4.54%. When all of the clinical information (including age and sex, daily habits, cardiovascular factors, metabolic factors, and inflammatory factors) was encoded, the difference was decreased to 53.89 cm<sup>3</sup>, with a relative error of 3.98%. Based on the synthesized brain MR images from retinal fundus images, the volumes of brain tissues could be estimated with high accuracy. This study provides an innovative, accurate, and cost-effective approach to characterize brain health status through readily accessible retinal fundus images. NCT05453877 ( https://clinicaltrials.gov/ ).

Improving 3D Thin Vessel Segmentation in Brain TOF-MRA via a Dual-space Context-Aware Network.

Shan W, Li X, Wang X, Li Q, Wang Z

pubmed logopapersAug 6 2025
3D cerebrovascular segmentation poses a significant challenge, akin to locating a line within a vast 3D environment. This complexity can be substantially reduced by projecting the vessels onto a 2D plane, enabling easier segmentation. In this paper, we create a vessel-segmentation-friendly space using a clinical visualization technique called maximum intensity projection (MIP). Leveraging this, we propose a Dual-space Context-Aware Network (DCANet) for 3D vessel segmentation, designed to capture even the finest vessel structures accurately. DCANet begins by transforming a magnetic resonance angiography (MRA) volume into a 3D Regional-MIP volume, where each Regional-MIP slice is constructed by projecting adjacent MRA slices. This transformation highlights vessels as prominent continuous curves rather than the small circular or ellipsoidal cross-sections seen in MRA slices. DCANet encodes vessels separately in the MRA and the projected Regional-MIP spaces and introduces the Regional-MIP Image Fusion Block (MIFB) between these dual spaces to selectively integrate contextual features from Regional-MIP into MRA. Following dual-space encoding, DCANet employs a Dual-mask Spatial Guidance TransFormer (DSGFormer) decoder to focus on vessel regions while effectively excluding background areas, which reduces the learning burden and improves segmentation accuracy. We benchmark DCANet on four datasets: two public datasets, TubeTK and IXI-IOP, and two in-house datasets, Xiehe and IXI-HH. The results demonstrate that DCANet achieves superior performance, with improvements in average DSC values of at least 2.26%, 2.17%, 2.62%, and 2.58% for thin vessels, respectively. Codes are available at: https://github.com/shanwq/DCANet.
Page 8 of 91901 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.