Sort by:
Page 78 of 91901 results

Deep learning-driven modality imputation and subregion segmentation to enhance high-grade glioma grading.

Yu J, Liu Q, Xu C, Zhou Q, Xu J, Zhu L, Chen C, Zhou Y, Xiao B, Zheng L, Zhou X, Zhang F, Ye Y, Mi H, Zhang D, Yang L, Wu Z, Wang J, Chen M, Zhou Z, Wang H, Wang VY, Wang E, Xu D

pubmed logopapersMay 30 2025
This study aims to develop a deep learning framework that leverages modality imputation and subregion segmentation to improve grading accuracy in high-grade gliomas. A retrospective analysis was conducted using data from 1,251 patients in the BraTS2021 dataset as the main cohort and 181 clinical cases collected from a medical center between April 2013 and June 2018 (51 years ± 17; 104 males) as the external test set. We propose a PatchGAN-based modality imputation network with an Aggregated Residual Transformer (ART) module combining Transformer self-attention and CNN feature extraction via residual links, paired with a U-Net variant for segmentation. Generative accuracy used PSNR and SSIM for modality conversions, while segmentation performance was measured with DSC and HD95 across necrotic core (NCR), edema (ED), and enhancing tumor (ET) regions. Senior radiologists conducted a comprehensive Likert-based assessment, with diagnostic accuracy evaluated by AUC. Statistical analysis was performed using the Wilcoxon signed-rank test and the DeLong test. The best source-target modality pairs for imputation were T1 to T1ce and T1ce to T2 (p < 0.001). In subregion segmentation, the overall DSC was 0.878 and HD95 was 19.491, with the ET region showing the highest segmentation accuracy (DSC: 0.877, HD95: 12.149). Clinical validation revealed an improvement in grading accuracy by the senior radiologist, with the AUC increasing from 0.718 to 0.913 (P < 0.001) when using the combined imputation and segmentation models. The proposed deep learning framework improves high-grade glioma grading by modality imputation and segmentation, aiding the senior radiologist and offering potential to advance clinical decision-making.

ACM-UNet: Adaptive Integration of CNNs and Mamba for Efficient Medical Image Segmentation

Jing Huang, Yongkang Zhao, Yuhan Li, Zhitao Dai, Cheng Chen, Qiying Lai

arxiv logopreprintMay 30 2025
The U-shaped encoder-decoder architecture with skip connections has become a prevailing paradigm in medical image segmentation due to its simplicity and effectiveness. While many recent works aim to improve this framework by designing more powerful encoders and decoders, employing advanced convolutional neural networks (CNNs) for local feature extraction, Transformers or state space models (SSMs) such as Mamba for global context modeling, or hybrid combinations of both, these methods often struggle to fully utilize pretrained vision backbones (e.g., ResNet, ViT, VMamba) due to structural mismatches. To bridge this gap, we introduce ACM-UNet, a general-purpose segmentation framework that retains a simple UNet-like design while effectively incorporating pretrained CNNs and Mamba models through a lightweight adapter mechanism. This adapter resolves architectural incompatibilities and enables the model to harness the complementary strengths of CNNs and SSMs-namely, fine-grained local detail extraction and long-range dependency modeling. Additionally, we propose a hierarchical multi-scale wavelet transform module in the decoder to enhance feature fusion and reconstruction fidelity. Extensive experiments on the Synapse and ACDC benchmarks demonstrate that ACM-UNet achieves state-of-the-art performance while remaining computationally efficient. Notably, it reaches 85.12% Dice Score and 13.89mm HD95 on the Synapse dataset with 17.93G FLOPs, showcasing its effectiveness and scalability. Code is available at: https://github.com/zyklcode/ACM-UNet.

Pretraining Deformable Image Registration Networks with Random Images

Junyu Chen, Shuwen Wei, Yihao Liu, Aaron Carass, Yong Du

arxiv logopreprintMay 30 2025
Recent advances in deep learning-based medical image registration have shown that training deep neural networks~(DNNs) does not necessarily require medical images. Previous work showed that DNNs trained on randomly generated images with carefully designed noise and contrast properties can still generalize well to unseen medical data. Building on this insight, we propose using registration between random images as a proxy task for pretraining a foundation model for image registration. Empirical results show that our pretraining strategy improves registration accuracy, reduces the amount of domain-specific data needed to achieve competitive performance, and accelerates convergence during downstream training, thereby enhancing computational efficiency.

Beyond the LUMIR challenge: The pathway to foundational registration models

Junyu Chen, Shuwen Wei, Joel Honkamaa, Pekka Marttinen, Hang Zhang, Min Liu, Yichao Zhou, Zuopeng Tan, Zhuoyuan Wang, Yi Wang, Hongchao Zhou, Shunbo Hu, Yi Zhang, Qian Tao, Lukas Förner, Thomas Wendler, Bailiang Jian, Benedikt Wiestler, Tim Hable, Jin Kim, Dan Ruan, Frederic Madesta, Thilo Sentker, Wiebke Heyer, Lianrui Zuo, Yuwei Dai, Jing Wu, Jerry L. Prince, Harrison Bai, Yong Du, Yihao Liu, Alessa Hering, Reuben Dorent, Lasse Hansen, Mattias P. Heinrich, Aaron Carass

arxiv logopreprintMay 30 2025
Medical image challenges have played a transformative role in advancing the field, catalyzing algorithmic innovation and establishing new performance standards across diverse clinical applications. Image registration, a foundational task in neuroimaging pipelines, has similarly benefited from the Learn2Reg initiative. Building on this foundation, we introduce the Large-scale Unsupervised Brain MRI Image Registration (LUMIR) challenge, a next-generation benchmark designed to assess and advance unsupervised brain MRI registration. Distinct from prior challenges that leveraged anatomical label maps for supervision, LUMIR removes this dependency by providing over 4,000 preprocessed T1-weighted brain MRIs for training without any label maps, encouraging biologically plausible deformation modeling through self-supervision. In addition to evaluating performance on 590 held-out test subjects, LUMIR introduces a rigorous suite of zero-shot generalization tasks, spanning out-of-domain imaging modalities (e.g., FLAIR, T2-weighted, T2*-weighted), disease populations (e.g., Alzheimer's disease), acquisition protocols (e.g., 9.4T MRI), and species (e.g., macaque brains). A total of 1,158 subjects and over 4,000 image pairs were included for evaluation. Performance was assessed using both segmentation-based metrics (Dice coefficient, 95th percentile Hausdorff distance) and landmark-based registration accuracy (target registration error). Across both in-domain and zero-shot tasks, deep learning-based methods consistently achieved state-of-the-art accuracy while producing anatomically plausible deformation fields. The top-performing deep learning-based models demonstrated diffeomorphic properties and inverse consistency, outperforming several leading optimization-based methods, and showing strong robustness to most domain shifts, the exception being a drop in performance on out-of-domain contrasts.

CCTA-Derived coronary plaque burden offers enhanced prognostic value over CAC scoring in suspected CAD patients.

Dahdal J, Jukema RA, Maaniitty T, Nurmohamed NS, Raijmakers PG, Hoek R, Driessen RS, Twisk JWR, Bär S, Planken RN, van Royen N, Nijveldt R, Bax JJ, Saraste A, van Rosendael AR, Knaapen P, Knuuti J, Danad I

pubmed logopapersMay 30 2025
To assess the prognostic utility of coronary artery calcium (CAC) scoring and coronary computed tomography angiography (CCTA)-derived quantitative plaque metrics for predicting adverse cardiovascular outcomes. The study enrolled 2404 patients with suspected coronary artery disease (CAD) but without a prior history of CAD. All participants underwent CAC scoring and CCTA, with plaque metrics quantified using an artificial intelligence (AI)-based tool (Cleerly, Inc). Percent atheroma volume (PAV) and non-calcified plaque volume percentage (NCPV%), reflecting total plaque burden and the proportion of non-calcified plaque volume normalized to vessel volume, were evaluated. The primary endpoint was a composite of all-cause mortality and non-fatal myocardial infarction (MI). Cox proportional hazard models, adjusted for clinical risk factors and early revascularization, were employed for analysis. During a median follow-up of 7.0 years, 208 patients (8.7%) experienced the primary endpoint, including 73 cases of MI (3%). The model incorporating PAV demonstrated superior discriminatory power for the composite endpoint (AUC = 0.729) compared to CAC scoring (AUC = 0.706, P = 0.016). In MI prediction, PAV (AUC = 0.791) significantly outperformed CAC (AUC = 0.699, P < 0.001), with NCPV% showing the highest prognostic accuracy (AUC = 0.814, P < 0.001). AI-driven assessment of coronary plaque burden enhances prognostic accuracy for future adverse cardiovascular events, highlighting the critical role of comprehensive plaque characterization in refining risk stratification strategies.

Comparative analysis of natural language processing methodologies for classifying computed tomography enterography reports in Crohn's disease patients.

Dai J, Kim MY, Sutton RT, Mitchell JR, Goebel R, Baumgart DC

pubmed logopapersMay 30 2025
Imaging is crucial to assess disease extent, activity, and outcomes in inflammatory bowel disease (IBD). Artificial intelligence (AI) image interpretation requires automated exploitation of studies at scale as an initial step. Here we evaluate natural language processing to classify Crohn's disease (CD) on CTE. From our population representative IBD registry a sample of CD patients (male: 44.6%, median age: 50 IQR37-60) and controls (n = 981 each) CTE reports were extracted and split into training- (n = 1568), development- (n = 196), and testing (n = 198) datasets each with around 200 words and balanced numbers of labels, respectively. Predictive classification was evaluated with CNN, Bi-LSTM, BERT-110M, LLaMA-3.3-70B-Instruct and DeepSeek-R1-Distill-LLaMA-70B. While our custom IBDBERT finetuned on expert IBD knowledge (i.e. ACG, AGA, ECCO guidelines), outperformed rule- and rationale extraction-based classifiers (accuracy 88.6% with pre-tuning learning rate 0.00001, AUC 0.945) in predictive performance, LLaMA, but not DeepSeek achieved overall superior results (accuracy 91.2% vs. 88.9%, F1 0.907 vs. 0.874).

Machine learning-based hemodynamics quantitative assessment of pulmonary circulation using computed tomographic pulmonary angiography.

Xie H, Zhao X, Zhang N, Liu J, Yang G, Cao Y, Xu J, Xu L, Sun Z, Wen Z, Chai S, Liu D

pubmed logopapersMay 30 2025
Pulmonary hypertension (pH) is a malignant pulmonary circulation disease. Right heart catheterization (RHC) is the gold standard procedure for quantitative evaluation of pulmonary hemodynamics. Accurate and noninvasive quantitative evaluation of pulmonary hemodynamics is challenging due to the limitations of currently available assessment methods. Patients who underwent computed tomographic pulmonary angiography (CTPA) and RHC examinations within 2 weeks were included. The dataset was randomly divided into a training set and a test set at an 8:2 ratio. A radiomic feature model and another two-dimensional (2D) feature model aimed to quantitatively evaluate of pulmonary hemodynamics were constructed. The performance of models was determined by calculating the mean squared error, the intraclass correlation coefficient (ICC) and the area under the precision-recall curve (AUC-PR) and performing Bland-Altman analyses. 345 patients: 271 patients with PH (mean age 50 ± 17 years, 93 men) and 74 without PH (mean age 55 ± 16 years, 26 men) were identified. The predictive results of pulmonary hemodynamics of radiomic feature model integrating 5 2D features and other 30 radiomic features were consistent with the results from RHC, and outperformed another 2D feature model. The radiomic feature model exhibited moderate to good reproducibility to predict pulmonary hemodynamic parameters (ICC reached 0.87). In addition, pH can be accurately identified based on a classification model (AUC-PR =0.99). This study provides a noninvasive method for comprehensively and quantitatively evaluating pulmonary hemodynamics using CTPA images, which has the potential to serve as an alternative to RHC, pending further validation.

The value of artificial intelligence in PSMA PET: a pathway to improved efficiency and results.

Dadgar H, Hong X, Karimzadeh R, Ibragimov B, Majidpour J, Arabi H, Al-Ibraheem A, Khalaf AN, Anwar FM, Marafi F, Haidar M, Jafari E, Zarei A, Assadi M

pubmed logopapersMay 30 2025
This systematic review investigates the potential of artificial intelligence (AI) in improving the accuracy and efficiency of prostate-specific membrane antigen positron emission tomography (PSMA PET) scans for detecting metastatic prostate cancer. A comprehensive literature search was conducted across Medline, Embase, and Web of Science, adhering to PRISMA guidelines. Key search terms included "artificial intelligence," "machine learning," "deep learning," "prostate cancer," and "PSMA PET." The PICO framework guided the selection of studies focusing on AI's application in evaluating PSMA PET scans for staging lymph node and distant metastasis in prostate cancer patients. Inclusion criteria prioritized original English-language articles published up to October 2024, excluding studies using non-PSMA radiotracers, those analyzing only the CT component of PSMA PET-CT, studies focusing solely on intra-prostatic lesions, and non-original research articles. The review included 22 studies, with a mix of prospective and retrospective designs. AI algorithms employed included machine learning (ML), deep learning (DL), and convolutional neural networks (CNNs). The studies explored various applications of AI, including improving diagnostic accuracy, sensitivity, differentiation from benign lesions, standardization of reporting, and predicting treatment response. Results showed high sensitivity (62% to 97%) and accuracy (AUC up to 98%) in detecting metastatic disease, but also significant variability in positive predictive value (39.2% to 66.8%). AI demonstrates significant promise in enhancing PSMA PET scan analysis for metastatic prostate cancer, offering improved efficiency and potentially better diagnostic accuracy. However, the variability in performance and the "black box" nature of some algorithms highlight the need for larger prospective studies, improved model interpretability, and the continued involvement of experienced nuclear medicine physicians in interpreting AI-assisted results. AI should be considered a valuable adjunct, not a replacement, for expert clinical judgment.

Deep learning reconstruction improves computer-aided pulmonary nodule detection and measurement accuracy for ultra-low-dose chest CT.

Wang J, Zhu Z, Pan Z, Tan W, Han W, Zhou Z, Hu G, Ma Z, Xu Y, Ying Z, Sui X, Jin Z, Song L, Song W

pubmed logopapersMay 30 2025
To compare the image quality and pulmonary nodule detectability and measurement accuracy between deep learning reconstruction (DLR) and hybrid iterative reconstruction (HIR) of chest ultra-low-dose CT (ULDCT). Participants who underwent chest standard-dose CT (SDCT) followed by ULDCT from October 2020 to January 2022 were prospectively included. ULDCT images reconstructed with HIR and DLR were compared with SDCT images to evaluate image quality, nodule detection rate, and measurement accuracy using a commercially available deep learning-based nodule evaluation system. Wilcoxon signed-rank test was used to evaluate the percentage errors of nodule size and nodule volume between HIR and DLR images. Eighty-four participants (54 ± 13 years; 26 men) were finally enrolled. The effective radiation doses of ULDCT and SDCT were 0.16 ± 0.02 mSv and 1.77 ± 0.67 mSv, respectively (P < 0.001). The mean ± standard deviation of the lung tissue noises was 61.4 ± 3.0 HU for SDCT, 61.5 ± 2.8 HU and 55.1 ± 3.4 HU for ULDCT reconstructed with HIR-Strong setting (HIR-Str) and DLR-Strong setting (DLR-Str), respectively (P < 0.001). A total of 535 nodules were detected. The nodule detection rates of ULDCT HIR-Str and ULDCT DLR-Str were 74.0% and 83.4%, respectively (P < 0.001). The absolute percentage error in nodule volume from that of SDCT was 19.5% in ULDCT HIR-Str versus 17.9% in ULDCT DLR-Str (P < 0.001). Compared with HIR, DLR reduced image noise, increased nodule detection rate, and improved measurement accuracy of nodule volume at chest ULDCT. Not applicable.

Super-temporal-resolution Photoacoustic Imaging with Dynamic Reconstruction through Implicit Neural Representation in Sparse-view

Youshen Xiao, Yiling Shi, Ruixi Sun, Hongjiang Wei, Fei Gao, Yuyao Zhang

arxiv logopreprintMay 29 2025
Dynamic Photoacoustic Computed Tomography (PACT) is an important imaging technique for monitoring physiological processes, capable of providing high-contrast images of optical absorption at much greater depths than traditional optical imaging methods. However, practical instrumentation and geometric constraints limit the number of acoustic sensors available around the imaging target, leading to sparsity in sensor data. Traditional photoacoustic (PA) image reconstruction methods, when directly applied to sparse PA data, produce severe artifacts. Additionally, these traditional methods do not consider the inter-frame relationships in dynamic imaging. Temporal resolution is crucial for dynamic photoacoustic imaging, which is fundamentally limited by the low repetition rate (e.g., 20 Hz) and high cost of high-power laser technology. Recently, Implicit Neural Representation (INR) has emerged as a powerful deep learning tool for solving inverse problems with sparse data, by characterizing signal properties as continuous functions of their coordinates in an unsupervised manner. In this work, we propose an INR-based method to improve dynamic photoacoustic image reconstruction from sparse-views and enhance temporal resolution, using only spatiotemporal coordinates as input. Specifically, the proposed INR represents dynamic photoacoustic images as implicit functions and encodes them into a neural network. The weights of the network are learned solely from the acquired sparse sensor data, without the need for external training datasets or prior images. Benefiting from the strong implicit continuity regularization provided by INR, as well as explicit regularization for low-rank and sparsity, our proposed method outperforms traditional reconstruction methods under two different sparsity conditions, effectively suppressing artifacts and ensuring image quality.
Page 78 of 91901 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.