Sort by:
Page 73 of 1431421 results

Development of a deep learning model for T1N0 gastric cancer diagnosis using 2.5D radiomic data in preoperative CT images.

He J, Xu J, Chen W, Cao M, Zhang J, Yang Q, Li E, Zhang R, Tong Y, Zhang Y, Gao C, Zhao Q, Xu Z, Wang L, Cheng X, Zheng G, Pan S, Hu C

pubmed logopapersJul 23 2025
Early detection and precise preoperative staging of early gastric cancer (EGC) are critical. Therefore, this study aims to develop a deep learning model using portal venous phase CT images to accurately distinguish EGC without lymph node metastasis. This study included 3164 patients with gastric cancer (GC) who underwent radical surgery at two medical centers in China from 2006 to 2019. Moreover, 2.5D radiomic data and multi-instance learning (MIL) were novel approaches applied in this study. By basing the selection of features on 2.5D radiomic data and MIL, the ResNet101 model combined with the XGBoost model represented a satisfactory performance for diagnosing pT1N0 GC. Furthermore, the 2.5D MIL-based model demonstrated a markedly superior predictive performance compared to traditional radiomics models and clinical models. We first constructed a deep learning prediction model based on 2.5D radiomics and MIL for effectively diagnosing pT1N0 GC patients, which provides valuable information for the individualized treatment selection.

Mammo-Mamba: A Hybrid State-Space and Transformer Architecture with Sequential Mixture of Experts for Multi-View Mammography

Farnoush Bayatmakou, Reza Taleei, Nicole Simone, Arash Mohammadi

arxiv logopreprintJul 23 2025
Breast cancer (BC) remains one of the leading causes of cancer-related mortality among women, despite recent advances in Computer-Aided Diagnosis (CAD) systems. Accurate and efficient interpretation of multi-view mammograms is essential for early detection, driving a surge of interest in Artificial Intelligence (AI)-powered CAD models. While state-of-the-art multi-view mammogram classification models are largely based on Transformer architectures, their computational complexity scales quadratically with the number of image patches, highlighting the need for more efficient alternatives. To address this challenge, we propose Mammo-Mamba, a novel framework that integrates Selective State-Space Models (SSMs), transformer-based attention, and expert-driven feature refinement into a unified architecture. Mammo-Mamba extends the MambaVision backbone by introducing the Sequential Mixture of Experts (SeqMoE) mechanism through its customized SecMamba block. The SecMamba is a modified MambaVision block that enhances representation learning in high-resolution mammographic images by enabling content-adaptive feature refinement. These blocks are integrated into the deeper stages of MambaVision, allowing the model to progressively adjust feature emphasis through dynamic expert gating, effectively mitigating the limitations of traditional Transformer models. Evaluated on the CBIS-DDSM benchmark dataset, Mammo-Mamba achieves superior classification performance across all key metrics while maintaining computational efficiency.

Illicit object detection in X-ray imaging using deep learning techniques: A comparative evaluation

Jorgen Cani, Christos Diou, Spyridon Evangelatos, Vasileios Argyriou, Panagiotis Radoglou-Grammatikis, Panagiotis Sarigiannidis, Iraklis Varlamis, Georgios Th. Papadopoulos

arxiv logopreprintJul 23 2025
Automated X-ray inspection is crucial for efficient and unobtrusive security screening in various public settings. However, challenges such as object occlusion, variations in the physical properties of items, diversity in X-ray scanning devices, and limited training data hinder accurate and reliable detection of illicit items. Despite the large body of research in the field, reported experimental evaluations are often incomplete, with frequently conflicting outcomes. To shed light on the research landscape and facilitate further research, a systematic, detailed, and thorough comparative evaluation of recent Deep Learning (DL)-based methods for X-ray object detection is conducted. For this, a comprehensive evaluation framework is developed, composed of: a) Six recent, large-scale, and widely used public datasets for X-ray illicit item detection (OPIXray, CLCXray, SIXray, EDS, HiXray, and PIDray), b) Ten different state-of-the-art object detection schemes covering all main categories in the literature, including generic Convolutional Neural Network (CNN), custom CNN, generic transformer, and hybrid CNN-transformer architectures, and c) Various detection (mAP50 and mAP50:95) and time/computational-complexity (inference time (ms), parameter size (M), and computational load (GFLOPS)) metrics. A thorough analysis of the results leads to critical observations and insights, emphasizing key aspects such as: a) Overall behavior of the object detection schemes, b) Object-level detection performance, c) Dataset-specific observations, and d) Time efficiency and computational complexity analysis. To support reproducibility of the reported experimental results, the evaluation code and model weights are made publicly available at https://github.com/jgenc/xray-comparative-evaluation.

Unsupervised anomaly detection using Bayesian flow networks: application to brain FDG PET in the context of Alzheimer's disease

Hugues Roy, Reuben Dorent, Ninon Burgos

arxiv logopreprintJul 23 2025
Unsupervised anomaly detection (UAD) plays a crucial role in neuroimaging for identifying deviations from healthy subject data and thus facilitating the diagnosis of neurological disorders. In this work, we focus on Bayesian flow networks (BFNs), a novel class of generative models, which have not yet been applied to medical imaging or anomaly detection. BFNs combine the strength of diffusion frameworks and Bayesian inference. We introduce AnoBFN, an extension of BFNs for UAD, designed to: i) perform conditional image generation under high levels of spatially correlated noise, and ii) preserve subject specificity by incorporating a recursive feedback from the input image throughout the generative process. We evaluate AnoBFN on the challenging task of Alzheimer's disease-related anomaly detection in FDG PET images. Our approach outperforms other state-of-the-art methods based on VAEs (beta-VAE), GANs (f-AnoGAN), and diffusion models (AnoDDPM), demonstrating its effectiveness at detecting anomalies while reducing false positive rates.

Benchmarking of Deep Learning Methods for Generic MRI Multi-OrganAbdominal Segmentation

Deepa Krishnaswamy, Cosmin Ciausu, Steve Pieper, Ron Kikinis, Benjamin Billot, Andrey Fedorov

arxiv logopreprintJul 23 2025
Recent advances in deep learning have led to robust automated tools for segmentation of abdominal computed tomography (CT). Meanwhile, segmentation of magnetic resonance imaging (MRI) is substantially more challenging due to the inherent signal variability and the increased effort required for annotating training datasets. Hence, existing approaches are trained on limited sets of MRI sequences, which might limit their generalizability. To characterize the landscape of MRI abdominal segmentation tools, we present here a comprehensive benchmarking of the three state-of-the-art and open-source models: MRSegmentator, MRISegmentator-Abdomen, and TotalSegmentator MRI. Since these models are trained using labor-intensive manual annotation cycles, we also introduce and evaluate ABDSynth, a SynthSeg-based model purely trained on widely available CT segmentations (no real images). More generally, we assess accuracy and generalizability by leveraging three public datasets (not seen by any of the evaluated methods during their training), which span all major manufacturers, five MRI sequences, as well as a variety of subject conditions, voxel resolutions, and fields-of-view. Our results reveal that MRSegmentator achieves the best performance and is most generalizable. In contrast, ABDSynth yields slightly less accurate results, but its relaxed requirements in training data make it an alternative when the annotation budget is limited. The evaluation code and datasets are given for future benchmarking at https://github.com/deepakri201/AbdoBench, along with inference code and weights for ABDSynth.

Benchmarking of Deep Learning Methods for Generic MRI Multi-Organ Abdominal Segmentation

Deepa Krishnaswamy, Cosmin Ciausu, Steve Pieper, Ron Kikinis, Benjamin Billot, Andrey Fedorov

arxiv logopreprintJul 23 2025
Recent advances in deep learning have led to robust automated tools for segmentation of abdominal computed tomography (CT). Meanwhile, segmentation of magnetic resonance imaging (MRI) is substantially more challenging due to the inherent signal variability and the increased effort required for annotating training datasets. Hence, existing approaches are trained on limited sets of MRI sequences, which might limit their generalizability. To characterize the landscape of MRI abdominal segmentation tools, we present here a comprehensive benchmarking of the three state-of-the-art and open-source models: MRSegmentator, MRISegmentator-Abdomen, and TotalSegmentator MRI. Since these models are trained using labor-intensive manual annotation cycles, we also introduce and evaluate ABDSynth, a SynthSeg-based model purely trained on widely available CT segmentations (no real images). More generally, we assess accuracy and generalizability by leveraging three public datasets (not seen by any of the evaluated methods during their training), which span all major manufacturers, five MRI sequences, as well as a variety of subject conditions, voxel resolutions, and fields-of-view. Our results reveal that MRSegmentator achieves the best performance and is most generalizable. In contrast, ABDSynth yields slightly less accurate results, but its relaxed requirements in training data make it an alternative when the annotation budget is limited. The evaluation code and datasets are given for future benchmarking at https://github.com/deepakri201/AbdoBench, along with inference code and weights for ABDSynth.

VGS-ATD: Robust Distributed Learning for Multi-Label Medical Image Classification Under Heterogeneous and Imbalanced Conditions

Zehui Zhao, Laith Alzubaidi, Haider A. Alwzwazy, Jinglan Zhang, Yuantong Gu

arxiv logopreprintJul 23 2025
In recent years, advanced deep learning architectures have shown strong performance in medical imaging tasks. However, the traditional centralized learning paradigm poses serious privacy risks as all data is collected and trained on a single server. To mitigate this challenge, decentralized approaches such as federated learning and swarm learning have emerged, allowing model training on local nodes while sharing only model weights. While these methods enhance privacy, they struggle with heterogeneous and imbalanced data and suffer from inefficiencies due to frequent communication and the aggregation of weights. More critically, the dynamic and complex nature of clinical environments demands scalable AI systems capable of continuously learning from diverse modalities and multilabels. Yet, both centralized and decentralized models are prone to catastrophic forgetting during system expansion, often requiring full model retraining to incorporate new data. To address these limitations, we propose VGS-ATD, a novel distributed learning framework. To validate VGS-ATD, we evaluate it in experiments spanning 30 datasets and 80 independent labels across distributed nodes, VGS-ATD achieved an overall accuracy of 92.7%, outperforming centralized learning (84.9%) and swarm learning (72.99%), while federated learning failed under these conditions due to high requirements on computational resources. VGS-ATD also demonstrated strong scalability, with only a 1% drop in accuracy on existing nodes after expansion, compared to a 20% drop in centralized learning, highlighting its resilience to catastrophic forgetting. Additionally, it reduced computational costs by up to 50% relative to both centralized and swarm learning, confirming its superior efficiency and scalability.

Developing deep learning-based cerebral ventricle auto-segmentation system and clinical application for the evaluation of ventriculomegaly.

Nam SM, Hwang JH, Kim JM, Lee DI, Kim YH, Park SJ, Park CK, Dho YS, Kim MS

pubmed logopapersJul 23 2025
Current methods for evaluating ventriculomegaly, particularly Evans' Index (EI), fail to accurately assess three-dimensional ventricular changes. We developed and validated an automated multi-class segmentation system for precise volumetric assessment, simultaneously segmenting five anatomical classes (ventricles, parenchyma, skull, skin, and hemorrhage) to support future augmented reality (AR)-guided external ventricular drainage (EVD) systems. Using the nnUNet architecture, we trained our model on 288 brain CT scans with diverse pathological conditions and validated it using internal (n=10),external (n=43) and public (n=192) datasets. Clinical validation involved 227 patients who underwent CSF drainage procedures. We compared automated volumetric measurements against traditional EI measurements and actual CSF drainage volumes in surgical cases. The model achieved exceptional performance with a mean Dice similarity coefficient of 93.0% across all five classes, demonstrating consistent performance across institutional and public datasets, with particularly robust ventricle segmentation (92.5%). Clinical validation revealed EI was the strongest single predictor of ventricular volume (adjusted R<sup>2</sup> = 0.430, p < 0.001), though influenced by age, sex, and diagnosis type. Most significantly, in EVD cases, automated volume differences showed remarkable correlation with actual CSF drainage amounts (β = 0.956, adjusted R<sup>2</sup> = 0.936, p < 0.001), validating the system's accuracy in measuring real CSF volume changes. Our comprehensive multi-class segmentation system offers a superior alternative to traditional measurements with potential for non-invasive CSF dynamics monitoring and AR-guided EVD placement.

VGS-ATD: Robust Distributed Learning for Multi-Label Medical Image Classification Under Heterogeneous and Imbalanced Conditions

Zehui Zhao, Laith Alzubaidi, Haider A. Alwzwazy, Jinglan Zhang, Yuantong Gu

arxiv logopreprintJul 23 2025
In recent years, advanced deep learning architectures have shown strong performance in medical imaging tasks. However, the traditional centralized learning paradigm poses serious privacy risks as all data is collected and trained on a single server. To mitigate this challenge, decentralized approaches such as federated learning and swarm learning have emerged, allowing model training on local nodes while sharing only model weights. While these methods enhance privacy, they struggle with heterogeneous and imbalanced data and suffer from inefficiencies due to frequent communication and the aggregation of weights. More critically, the dynamic and complex nature of clinical environments demands scalable AI systems capable of continuously learning from diverse modalities and multilabels. Yet, both centralized and decentralized models are prone to catastrophic forgetting during system expansion, often requiring full model retraining to incorporate new data. To address these limitations, we propose VGS-ATD, a novel distributed learning framework. To validate VGS-ATD, we evaluate it in experiments spanning 30 datasets and 80 independent labels across distributed nodes, VGS-ATD achieved an overall accuracy of 92.7%, outperforming centralized learning (84.9%) and swarm learning (72.99%), while federated learning failed under these conditions due to high requirements on computational resources. VGS-ATD also demonstrated strong scalability, with only a 1% drop in accuracy on existing nodes after expansion, compared to a 20% drop in centralized learning, highlighting its resilience to catastrophic forgetting. Additionally, it reduced computational costs by up to 50% relative to both centralized and swarm learning, confirming its superior efficiency and scalability.

DualSwinUnet++: An enhanced Swin-Unet architecture with dual decoders for PTMC segmentation.

Dialameh M, Rajabzadeh H, Sadeghi-Goughari M, Sim JS, Kwon HJ

pubmed logopapersJul 22 2025
Precise segmentation of papillary thyroid microcarcinoma (PTMC) during ultrasound-guided radiofrequency ablation (RFA) is critical for effective treatment but remains challenging due to acoustic artifacts, small lesion size, and anatomical variability. In this study, we propose DualSwinUnet++, a dual-decoder transformer-based architecture designed to enhance PTMC segmentation by incorporating thyroid gland context. DualSwinUnet++ employs independent linear projection heads for each decoder and a residual information flow mechanism that passes intermediate features from the first (thyroid) decoder to the second (PTMC) decoder via concatenation and transformation. These design choices allow the model to condition tumor prediction explicitly on gland morphology without shared gradient interference. Trained on a clinical ultrasound dataset with 691 annotated RFA images and evaluated against state-of-the-art models, DualSwinUnet++ achieves superior Dice and Jaccard scores while maintaining sub-200ms inference latency. The results demonstrate the model's suitability for near real-time surgical assistance and its effectiveness in improving segmentation accuracy in challenging PTMC cases.
Page 73 of 1431421 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.