Sort by:
Page 72 of 91902 results

C2 pars interarticularis length on the side of high-riding vertebral artery with implications for pars screw insertion.

Klepinowski T, Kałachurska M, Chylewski M, Żyłka N, Taterra D, Łątka K, Pala B, Poncyljusz W, Sagan L

pubmed logopapersMay 28 2025
C2 pars interarticularis length (C2PIL) required for pars screws has not been thoroughly studied in subjects with high-riding vertebral artery (HRVA). We aimed to measure C2PIL specifically on the sides with HRVA, define short pars, optimal pars screw length, and incorporate C2PIL into HRVA clusters using machine learning algorithms. A clinical anatomical study based on cervical CT was conducted with STROBE-compliant case-control design. HRVA was defined as accepted. Interobserver, intraobserver, and inter-software agreement coefficients for HRVA were adopted from our previous study. Sample size was estimated with pwr package and C2PIL was measured. Cut-off value and predictive statistics of C2PIL for HRVA were computed with cutpointr package. Unsupervised machine learning clustering was applied with all three pars parameters. 345 potential screw insertion sites (PSIS) were grouped as HRVA (143 PSIS in 110 subjects) or controls (202 PSIS in 101 subjects). 68% participants were females. The median C2PIL in HRVA group was 13.7 mm with interquartile range (IQR) of 1.7, whereas in controls it was 19.8 mm (IQR = 2.7). The optimal cut-off value of C2PIL discriminating HRVA was 16.06 mm with sensitivity of 96.5% and specificity of 99.3%. Therefore, clinically important short pars was defined as ≤ 16 mm rounding to the nearest screw length. Two clusters were created incorportating three parameters of pars interarticularis. In preoperative planning, the identified C2PIL cut-off of ≤ 16 mm may assist surgeons in early recognition of HRVA. The average screw lengths of 14 mm for bicortical and 12 mm for safer unicortical purchase in HRVA cases may serve as practical intraoperative reference points, particularly in situations requiring rapid decision-making or when navigation systems are unavailable. Moreover, C2PIL complements the classic HRVA parameters within the dichotomized clustering framework.

Operationalizing postmortem pathology-MRI association studies in Alzheimer's disease and related disorders with MRI-guided histology sampling.

Athalye C, Bahena A, Khandelwal P, Emrani S, Trotman W, Levorse LM, Khodakarami Z, Ohm DT, Teunissen-Bermeo E, Capp N, Sadaghiani S, Arezoumandan S, Lim SA, Prabhakaran K, Ittyerah R, Robinson JL, Schuck T, Lee EB, Tisdall MD, Das SR, Wolk DA, Irwin DJ, Yushkevich PA

pubmed logopapersMay 28 2025
Postmortem neuropathological examination, while the gold standard for diagnosing neurodegenerative diseases, often relies on limited regional sampling that may miss critical areas affected by Alzheimer's disease and related disorders. Ultra-high resolution postmortem MRI can help identify regions that fall outside the diagnostic sampling criteria for additional histopathologic evaluation. However, there are no standardized guidelines for integrating histology and MRI in a traditional brain bank. We developed a comprehensive protocol for whole hemisphere postmortem 7T MRI-guided histopathological sampling with whole-slide digital imaging and histopathological analysis, providing a reliable pipeline for high-volume brain banking in heterogeneous brain tissue. Our method uses patient-specific 3D printed molds built from postmortem MRI, allowing standardized tissue processing with a permanent spatial reference frame. To facilitate pathology-MRI association studies, we created a semi-automated MRI to histology registration pipeline and developed a quantitative pathology scoring system using weakly supervised deep learning. We validated this protocol on a cohort of 29 brains with diagnosis on the AD spectrum that revealed correlations between cortical thickness and phosphorylated tau accumulation. This pipeline has broad applicability across neuropathological research and brain banking, facilitating large-scale studies that integrate histology with neuroimaging. The innovations presented here provide a scalable and reproducible approach to studying postmortem brain pathology, with implications for advancing diagnostic and therapeutic strategies for Alzheimer's disease and related disorders.

High-Quality CEST Mapping With Lorentzian-Model Informed Neural Representation.

Chen C, Liu Y, Park SW, Li J, Chan KWY, Huang J, Morel JM, Chan RH

pubmed logopapersMay 28 2025
Chemical Exchange Saturation Transfer (CEST) MRI has demonstrated its remarkable ability to enhance the detection of macromolecules and metabolites with low concentrations. While CEST mapping is essential for quantifying molecular information, conventional methods face critical limitations: model-based approaches are constrained by limited sensitivity and robustness depending heavily on parameter setups, while data-driven deep learning methods lack generalizability across heterogeneous datasets and acquisition protocols. To overcome these challenges, we propose a Lorentzian-model Informed Neural Representation (LINR) framework for high-quality CEST mapping. LINR employs a self-supervised neural architecture embedding the Lorentzian equation - the fundamental biophysical model of CEST signal evolution - to directly reconstruct high-sensitivity parameter maps from raw z-spectra, eliminating dependency on labeled training data. Convergence of the self-supervised training strategy is guaranteed theoretically, ensuring LINR's mathematical validity. The superior performance of LINR in capturing CEST contrasts is revealed through comprehensive evaluations based on synthetic phantoms and in-vivo experiments (including tumor and Alzheimer's disease models). The intuitive parameter-free design enables adaptive integration into diverse CEST imaging workflows, positioning LINR as a versatile tool for non-invasive molecular diagnostics and pathophysiological discovery.

Image analysis research in neuroradiology: bridging clinical and technical domains.

Pareto D, Naval-Baudin P, Pons-Escoda A, Bargalló N, Garcia-Gil M, Majós C, Rovira À

pubmed logopapersMay 28 2025
Advancements in magnetic resonance imaging (MRI) analysis over the past decades have significantly reshaped the field of neuroradiology. The ability to extract multiple quantitative measures from each MRI scan, alongside the development of extensive data repositories, has been fundamental to the emergence of advanced methodologies such as radiomics and artificial intelligence (AI). This educational review aims to delineate the importance of image analysis, highlight key paradigm shifts, examine their implications, and identify existing constraints that must be addressed to facilitate integration into clinical practice. Particular attention is given to aiding junior neuroradiologists in navigating this complex and evolving landscape. A comprehensive review of the available analysis toolboxes was conducted, focusing on major technological advancements in MRI analysis, the evolution of data repositories, and the rise of AI and radiomics in neuroradiology. Stakeholders within the field were identified and their roles examined. Additionally, current challenges and barriers to clinical implementation were analyzed. The analysis revealed several pivotal shifts, including the transition from qualitative to quantitative imaging, the central role of large datasets in developing AI tools, and the growing importance of interdisciplinary collaboration. Key stakeholders-including academic institutions, industry partners, regulatory bodies, and clinical practitioners-were identified, each playing a distinct role in advancing the field. However, significant barriers remain, particularly regarding standardization, data sharing, regulatory approval, and integration into clinical workflows. While advancements in MRI analysis offer tremendous potential to enhance neuroradiology practice, realizing this potential requires overcoming technical, regulatory, and practical barriers. Education and structured support for junior neuroradiologists are essential to ensure they are well-equipped to participate in and drive future developments. A coordinated effort among stakeholders is crucial to facilitate the seamless translation of these technological innovations into everyday clinical practice.

Single Domain Generalization for Alzheimer's Detection from 3D MRIs with Pseudo-Morphological Augmentations and Contrastive Learning

Zobia Batool, Huseyin Ozkan, Erchan Aptoula

arxiv logopreprintMay 28 2025
Although Alzheimer's disease detection via MRIs has advanced significantly thanks to contemporary deep learning models, challenges such as class imbalance, protocol variations, and limited dataset diversity often hinder their generalization capacity. To address this issue, this article focuses on the single domain generalization setting, where given the data of one domain, a model is designed and developed with maximal performance w.r.t. an unseen domain of distinct distribution. Since brain morphology is known to play a crucial role in Alzheimer's diagnosis, we propose the use of learnable pseudo-morphological modules aimed at producing shape-aware, anatomically meaningful class-specific augmentations in combination with a supervised contrastive learning module to extract robust class-specific representations. Experiments conducted across three datasets show improved performance and generalization capacity, especially under class imbalance and imaging protocol variations. The source code will be made available upon acceptance at https://github.com/zobia111/SDG-Alzheimer.

Artificial Intelligence Augmented Cerebral Nuclear Imaging.

Currie GM, Hawk KE

pubmed logopapersMay 28 2025
Artificial intelligence (AI), particularly machine learning (ML) and deep learning (DL), has significant potential to advance the capabilities of nuclear neuroimaging. The current and emerging applications of ML and DL in the processing, analysis, enhancement and interpretation of SPECT and PET imaging are explored for brain imaging. Key developments include automated image segmentation, disease classification, and radiomic feature extraction, including lower dimensionality first and second order radiomics, higher dimensionality third order radiomics and more abstract fourth order deep radiomics. DL-based reconstruction, attenuation correction using pseudo-CT generation, and denoising of low-count studies have a role in enhancing image quality. AI has a role in sustainability through applications in radioligand design and preclinical imaging while federated learning addresses data security challenges to improve research and development in nuclear cerebral imaging. There is also potential for generative AI to transform the nuclear cerebral imaging space through solutions to data limitations, image enhancement, patient-centered care, workflow efficiencies and trainee education. Innovations in ML and DL are re-engineering the nuclear neuroimaging ecosystem and reimagining tomorrow's precision medicine landscape.

Interpretable Machine Learning Models for Differentiating Glioblastoma From Solitary Brain Metastasis Using Radiomics.

Xia X, Wu W, Tan Q, Gou Q

pubmed logopapersMay 27 2025
To develop and validate interpretable machine learning models for differentiating glioblastoma (GB) from solitary brain metastasis (SBM) using radiomics features from contrast-enhanced T1-weighted MRI (CE-T1WI), and to compare the impact of low-order and high-order features on model performance. A cohort of 434 patients with histopathologically confirmed GB (226 patients) and SBM (208 patients) was retrospectively analyzed. Radiomic features were derived from CE-T1WI, with feature selection conducted through minimum redundancy maximum relevance and least absolute shrinkage and selection operator regression. Machine learning models, including GradientBoost and lightGBM (LGBM), were trained using low-order and high-order features. The performance of the models was assessed through receiver operating characteristic analysis and computation of the area under the curve, along with other indicators, including accuracy, specificity, and sensitivity. SHapley Additive Explanations (SHAP) analysis is used to measure the influence of each feature on the model's predictions. The performances of various machine learning models on both the training and validation datasets were notably different. For the training group, the LGBM, CatBoost, multilayer perceptron (MLP), and GradientBoost models achieved the highest AUC scores, all exceeding 0.9, demonstrating strong discriminative power. The LGBM model exhibited the best stability, with a minimal AUC difference of only 0.005 between the training and test sets, suggesting strong generalizability. Among the validation group results, the GradientBoost classifier achieved the maximum AUC of 0.927, closely followed by random forest at 0.925. GradientBoost also demonstrated high sensitivity (0.911) and negative predictive value (NPV, 0.889), effectively identifying true positives. The LGBM model showed the highest test accuracy (86.2%) and performed excellently in terms of sensitivity (0.911), NPV (0.895), and positive predictive value (PPV, 0.837). The models utilizing high-order features outperformed those based on low-order features in all the metrics. SHAP analysis further enhances model interpretability, providing insights into feature importance and contributions to classification decisions. Machine learning techniques based on radiomics can effectively distinguish GB from SBM, with gradient boosting tree-based models such as LGBMs demonstrating superior performance. High-order features significantly improve model accuracy and robustness. SHAP technology enhances the interpretability and transparency of models for distinguishing brain tumors, providing intuitive visualization of the contribution of radiomic features to classification.

Neurostimulation for the Management of Epilepsy: Advances in Targeted Therapy.

Verma S, Malviya R, Sridhar SB, Sundram S, Shareef J

pubmed logopapersMay 27 2025
Epilepsy is a multifaceted neurological disorder marked by seizures that can present with a wide range of symptoms. Despite the prevalent use of anti-epileptic drugs, drug resistance and adverse effects present considerable obstacles. Despite advancements in anti-epileptic drugs (AEDs), approximately 20-30% of patients remain drug-resistant, highlighting the need for innovative therapeutic strategies. This study aimed to explore advancements in epilepsy diagnosis and treatment utilizing modern technology and medicines. The literature survey was carried out using Scopus, ScienceDirect, and Google Scholar. Data from the last 10 years were preferred to include in the study. Emerging technologies, such as artificial intelligence, gene therapy, and wearable gadgets, have transformed epilepsy care. EEG and MRI play essential roles in diagnosis, while AI aids in evaluating big datasets for more accurate seizure identification. Machine learning and artificial intelligence are increasingly integrated into diagnostic processes to enhance seizure detection and classification. Wearable technology improves patient self-monitoring and helps clinical research. Furthermore, gene treatments offer promise by treating the fundamental causes of seizure activity, while stem cell therapies give neuroprotective and regenerative advantages. Dietary interventions, including ketogenic diets, are being examined for their ability to modify neurochemical pathways implicated in epilepsy. Recent technological and therapeutic developments provide major benefits in epilepsy assessment and treatment, with AI and wearable devices enhancing seizure detection and patient monitoring. Nonetheless, additional study is essential to ensure greater clinical application and efficacy. Future perspectives include the potential of optogenetics and advanced signal processing techniques to revolutionize treatment paradigms, emphasizing the importance of personalized medicine in epilepsy care. Overall, a comprehensive understanding of the multifaceted nature of epilepsy is essential for developing effective interventions and improving patient outcomes.

Modeling Brain Aging with Explainable Triamese ViT: Towards Deeper Insights into Autism Disorder.

Zhang Z, Aggarwal V, Angelov P, Jiang R

pubmed logopapersMay 27 2025
Machine learning, particularly through advanced imaging techniques such as three-dimensional Magnetic Resonance Imaging (MRI), has significantly improved medical diagnostics. This is especially critical for diagnosing complex conditions like Alzheimer's disease. Our study introduces Triamese-ViT, an innovative Tri-structure of Vision Transformers (ViTs) that incorporates a built-in interpretability function, it has structure-aware explainability that allows for the identification and visualization of key features or regions contributing to the prediction, integrates information from three perspectives to enhance brain age estimation. This method not only increases accuracy but also improves interoperability with existing techniques. When evaluated, Triamese-ViT demonstrated superior performance and produced insightful attention maps. We applied these attention maps to the analysis of natural aging and the diagnosis of Autism Spectrum Disorder (ASD). The results aligned with those from occlusion analysis, identifying the Cingulum, Rolandic Operculum, Thalamus, and Vermis as important regions in normal aging, and highlighting the Thalamus and Caudate Nucleus as key regions for ASD diagnosis.
Page 72 of 91902 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.