Sort by:
Page 65 of 1341333 results

CSCE: Cross Supervising and Confidence Enhancement pseudo-labels for semi-supervised subcortical brain structure segmentation.

Sui Y, Zhang Y, Liu C

pubmed logopapersJul 11 2025
Robust and accurate segmentation of subcortical structures in brain MR images lays the foundation for observation, analysis and treatment planning of various brain diseases. Deep learning techniques based on Deep Neural Networks (DNNs) have achieved remarkable results in medical image segmentation by using abundant labeled data. However, due to the time-consuming and expensive of acquiring high quality annotations of brain subcortical structures, semi-supervised algorithms become practical in application. In this paper, we propose a novel framework for semi-supervised subcortical brain structure segmentation, based on pseudo-labels Cross Supervising and Confidence Enhancement (CSCE). Our framework comprises dual student-teacher models, specifically a U-Net and a TransUNet. For unlabeled data training, the TransUNet teacher generates pseudo-labels to supervise the U-Net student, while the U-Net teacher generates pseudo-labels to supervise the TransUNet student. This mutual supervision between the two models promotes and enhances their performance synergistically. We have designed two mechanisms to enhance the confidence of pseudo-labels to improve the reliability of cross-supervision: a) Using information entropy to describe uncertainty quantitatively; b) Design an auxiliary detection task to perform uncertainty detection on the pseudo-labels output by the teacher model, and then screened out reliable pseudo-labels for cross-supervision. Finally, we construct an end-to-end deep brain structure segmentation network only using one teacher network (U-Net or TransUNet) for inference, the segmentation results are significantly improved without increasing the parameters amount and segmentation time compared with supervised U-Net or TransUNet based segmentation algorithms. Comprehensive experiments are performed on two public benchmark brain MRI datasets. The proposed method achieves the best Dice scores and MHD values on both datasets compared to several recent state-of-the-art semi-supervised segmentation methods.

F3-Net: Foundation Model for Full Abnormality Segmentation of Medical Images with Flexible Input Modality Requirement

Seyedeh Sahar Taheri Otaghsara, Reza Rahmanzadeh

arxiv logopreprintJul 11 2025
F3-Net is a foundation model designed to overcome persistent challenges in clinical medical image segmentation, including reliance on complete multimodal inputs, limited generalizability, and narrow task specificity. Through flexible synthetic modality training, F3-Net maintains robust performance even in the presence of missing MRI sequences, leveraging a zero-image strategy to substitute absent modalities without relying on explicit synthesis networks, thereby enhancing real-world applicability. Its unified architecture supports multi-pathology segmentation across glioma, metastasis, stroke, and white matter lesions without retraining, outperforming CNN-based and transformer-based models that typically require disease-specific fine-tuning. Evaluated on diverse datasets such as BraTS 2021, BraTS 2024, and ISLES 2022, F3-Net demonstrates strong resilience to domain shifts and clinical heterogeneity. On the whole pathology dataset, F3-Net achieves average Dice Similarity Coefficients (DSCs) of 0.94 for BraTS-GLI 2024, 0.82 for BraTS-MET 2024, 0.94 for BraTS 2021, and 0.79 for ISLES 2022. This positions it as a versatile, scalable solution bridging the gap between deep learning research and practical clinical deployment.

An Efficient Approach for Muscle Segmentation and 3D Reconstruction Using Keypoint Tracking in MRI Scan

Mengyuan Liu, Jeongkyu Lee

arxiv logopreprintJul 11 2025
Magnetic resonance imaging (MRI) enables non-invasive, high-resolution analysis of muscle structures. However, automated segmentation remains limited by high computational costs, reliance on large training datasets, and reduced accuracy in segmenting smaller muscles. Convolutional neural network (CNN)-based methods, while powerful, often suffer from substantial computational overhead, limited generalizability, and poor interpretability across diverse populations. This study proposes a training-free segmentation approach based on keypoint tracking, which integrates keypoint selection with Lucas-Kanade optical flow. The proposed method achieves a mean Dice similarity coefficient (DSC) ranging from 0.6 to 0.7, depending on the keypoint selection strategy, performing comparably to state-of-the-art CNN-based models while substantially reducing computational demands and enhancing interpretability. This scalable framework presents a robust and explainable alternative for muscle segmentation in clinical and research applications.

HNOSeg-XS: Extremely Small Hartley Neural Operator for Efficient and Resolution-Robust 3D Image Segmentation.

Wong KCL, Wang H, Syeda-Mahmood T

pubmed logopapersJul 11 2025
In medical image segmentation, convolutional neural networks (CNNs) and transformers are dominant. For CNNs, given the local receptive fields of convolutional layers, long-range spatial correlations are captured through consecutive convolutions and pooling. However, as the computational cost and memory footprint can be prohibitively large, 3D models can only afford fewer layers than 2D models with reduced receptive fields and abstract levels. For transformers, although long-range correlations can be captured by multi-head attention, its quadratic complexity with respect to input size is computationally demanding. Therefore, either model may require input size reduction to allow more filters and layers for better segmentation. Nevertheless, given their discrete nature, models trained with patch-wise training or image downsampling may produce suboptimal results when applied on higher resolutions. To address this issue, here we propose the resolution-robust HNOSeg-XS architecture. We model image segmentation by learnable partial differential equations through the Fourier neural operator which has the zero-shot super-resolution property. By replacing the Fourier transform by the Hartley transform and reformulating the problem in the frequency domain, we created the HNOSeg-XS model, which is resolution robust, fast, memory efficient, and extremely parameter efficient. When tested on the BraTS'23, KiTS'23, and MVSeg'23 datasets with a Tesla V100 GPU, HNOSeg-XS showed its superior resolution robustness with fewer than 34.7k model parameters. It also achieved the overall best inference time (< 0.24 s) and memory efficiency (< 1.8 GiB) compared to the tested CNN and transformer models<sup>1</sup>.

Semi-supervised Medical Image Segmentation Using Heterogeneous Complementary Correction Network and Confidence Contrastive Learning.

Li L, Xue M, Li S, Dong Z, Liao T, Li P

pubmed logopapersJul 11 2025
Semi-supervised medical image segmentation techniques have demonstrated significant potential and effectiveness in clinical diagnosis. The prevailing approaches using the mean-teacher (MT) framework achieve promising image segmentation results. However, due to the unreliability of the pseudo labels generated by the teacher model, existing methods still have some inherent limitations that must be considered and addressed. In this paper, we propose an innovative semi-supervised method for medical image segmentation by combining the heterogeneous complementary correction network and confidence contrastive learning (HC-CCL). Specifically, we develop a triple-branch framework by integrating a heterogeneous complementary correction (HCC) network into the MT framework. HCC serves as an auxiliary branch that corrects prediction errors in the student model and provides complementary information. To improve the capacity for feature learning in our proposed model, we introduce a confidence contrastive learning (CCL) approach with a novel sampling strategy. Furthermore, we develop a momentum style transfer (MST) method to narrow the gap between labeled and unlabeled data distributions. In addition, we introduce a Cutout-style augmentation for unsupervised learning to enhance performance. Three medical image datasets (including left atrial (LA) dataset, NIH pancreas dataset, Brats-2019 dataset) were employed to rigorously evaluate HC-CCL. Quantitative results demonstrate significant performance advantages over existing approaches, achieving state-of-the-art performance across all metrics. The implementation will be released at https://github.com/xxmmss/HC-CCL .

Tiny-objective segmentation for spot signs on multi-phase CT angiography via contrastive learning with dynamic-updated positive-negative memory banks.

Zhang J, Horn M, Tanaka K, Bala F, Singh N, Benali F, Ganesh A, Demchuk AM, Menon BK, Qiu W

pubmed logopapersJul 11 2025
Presence of spot sign on CT Angiography (CTA) is associated with hematoma growth in patients with intracerebral hemorrhage. Measuring spot sign volume over time may aid to predict hematoma expansion. Due to the difficulties that imaging characteristics of spot sign are similar with vein and calcification and spot signs are tiny appeared in CTA images to detect, our aim is to develop an automated method to pick up spot signs accurately. We proposed a novel collaborative architecture of network based on a student-teacher model by efficiently exploiting additional negative samples with contrastive learning. In particular, a set of dynamic-updated memory banks is proposed to learn more distinctive features from the extremely imbalanced positive and negative samples. Alongside, a two-steam network with an additional contextual-decoder is designed for learning more contextual information at different scales in a collaborative way. Besides, to better inhibit the false positive detection rate, a region restriction loss function is further designed to confine the spot sign segmentation within the hemorrhage. Quantitative evaluations using dice, volume correlation, sensitivity, specificity, area under the curve show that the proposed method is able to segment and detect spot signs accurately. Our proposed contractive learning framework obtained the best segmentation performance regarding a mean Dice of 0.638 ± 0211, a mean VC of 0.871 and a mean VDP of 0.348 ± 0.237 and detection performance regarding sensitivity of 0.956 with CI(0.895,1.000), specificity of 0.833 with CI(0.766,0.900), and AUC of 0.892 with CI(0.888,0.896), outperforming nnuNet, cascade-nnuNet, nnuNet++, SegRegNet, UNETR and SwinUNETR. This paper proposed a novel segmentation approach that leverages contrastive learning to explore additional negative samples concurrently for the automatic segmentation of spot signs on mCTA images. The experimental results demonstrate the effectiveness of our method and highlight its potential applicability in clinical settings for measuring spot sign volumes.

Cycle Context Verification for In-Context Medical Image Segmentation

Shishuai Hu, Zehui Liao, Liangli Zhen, Huazhu Fu, Yong Xia

arxiv logopreprintJul 11 2025
In-context learning (ICL) is emerging as a promising technique for achieving universal medical image segmentation, where a variety of objects of interest across imaging modalities can be segmented using a single model. Nevertheless, its performance is highly sensitive to the alignment between the query image and in-context image-mask pairs. In a clinical scenario, the scarcity of annotated medical images makes it challenging to select optimal in-context pairs, and fine-tuning foundation ICL models on contextual data is infeasible due to computational costs and the risk of catastrophic forgetting. To address this challenge, we propose Cycle Context Verification (CCV), a novel framework that enhances ICL-based medical image segmentation by enabling self-verification of predictions and accordingly enhancing contextual alignment. Specifically, CCV employs a cyclic pipeline in which the model initially generates a segmentation mask for the query image. Subsequently, the roles of the query and an in-context pair are swapped, allowing the model to validate its prediction by predicting the mask of the original in-context image. The accuracy of this secondary prediction serves as an implicit measure of the initial query segmentation. A query-specific prompt is introduced to alter the query image and updated to improve the measure, thereby enhancing the alignment between the query and in-context pairs. We evaluated CCV on seven medical image segmentation datasets using two ICL foundation models, demonstrating its superiority over existing methods. Our results highlight CCV's ability to enhance ICL-based segmentation, making it a robust solution for universal medical image segmentation. The code will be available at https://github.com/ShishuaiHu/CCV.

GH-UNet: group-wise hybrid convolution-VIT for robust medical image segmentation.

Wang S, Li G, Gao M, Zhuo L, Liu M, Ma Z, Zhao W, Fu X

pubmed logopapersJul 10 2025
Medical image segmentation is vital for accurate diagnosis. While U-Net-based models are effective, they struggle to capture long-range dependencies in complex anatomy. We propose GH-UNet, a Group-wise Hybrid Convolution-ViT model within the U-Net framework, to address this limitation. GH-UNet integrates a hybrid convolution-Transformer encoder for both local detail and global context modeling, a Group-wise Dynamic Gating (GDG) module for adaptive feature weighting, and a cascaded decoder for multi-scale integration. Both the encoder and GDG are modular, enabling compatibility with various CNN or ViT backbones. Extensive experiments on five public and one private dataset show GH-UNet consistently achieves superior performance. On ISIC2016, it surpasses H2Former with 1.37% and 1.94% gains in DICE and IOU, respectively, using only 38% of the parameters and 49.61% of the FLOPs. The code is freely accessible via: https://github.com/xiachashuanghua/GH-UNet .

Semi-supervised learning and integration of multi-sequence MR-images for carotid vessel wall and plaque segmentation

Marie-Christine Pali, Christina Schwaiger, Malik Galijasevic, Valentin K. Ladenhauf, Stephanie Mangesius, Elke R. Gizewski

arxiv logopreprintJul 10 2025
The analysis of carotid arteries, particularly plaques, in multi-sequence Magnetic Resonance Imaging (MRI) data is crucial for assessing the risk of atherosclerosis and ischemic stroke. In order to evaluate metrics and radiomic features, quantifying the state of atherosclerosis, accurate segmentation is important. However, the complex morphology of plaques and the scarcity of labeled data poses significant challenges. In this work, we address these problems and propose a semi-supervised deep learning-based approach designed to effectively integrate multi-sequence MRI data for the segmentation of carotid artery vessel wall and plaque. The proposed algorithm consists of two networks: a coarse localization model identifies the region of interest guided by some prior knowledge on the position and number of carotid arteries, followed by a fine segmentation model for precise delineation of vessel walls and plaques. To effectively integrate complementary information across different MRI sequences, we investigate different fusion strategies and introduce a multi-level multi-sequence version of U-Net architecture. To address the challenges of limited labeled data and the complexity of carotid artery MRI, we propose a semi-supervised approach that enforces consistency under various input transformations. Our approach is evaluated on 52 patients with arteriosclerosis, each with five MRI sequences. Comprehensive experiments demonstrate the effectiveness of our approach and emphasize the role of fusion point selection in U-Net-based architectures. To validate the accuracy of our results, we also include an expert-based assessment of model performance. Our findings highlight the potential of fusion strategies and semi-supervised learning for improving carotid artery segmentation in data-limited MRI applications.

PediMS: A Pediatric Multiple Sclerosis Lesion Segmentation Dataset.

Popa M, Vișa GA, Șofariu CR

pubmed logopapersJul 10 2025
Multiple Sclerosis (MS) is a chronic autoimmune disease that primarily affects the central nervous system and is predominantly diagnosed in adults, making pediatric cases rare and underrepresented in medical research. This paper introduces the first publicly available MRI dataset specifically dedicated to pediatric multiple sclerosis lesion segmentation. The dataset comprises longitudinal MRI scans from 9 pediatric patients, each with between one and six timepoints, with a total of 28 MRI scans. It includes T1-weighted (MPRAGE), T2-weighted, and FLAIR sequences. Additionally, it provides clinical data and initial symptoms for each patient, offering valuable insights into disease progression. Lesion segmentation was performed by senior experts, ensuring high-quality annotations. To demonstrate the dataset's reliability and utility, we evaluated two deep learning models, achieving competitive segmentation performance. This dataset aims to advance research in pediatric MS, improve lesion segmentation models, and contribute to federated learning approaches.
Page 65 of 1341333 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.