Sort by:
Page 65 of 3463455 results

A Disease-Centric Vision-Language Foundation Model for Precision Oncology in Kidney Cancer

Yuhui Tao, Zhongwei Zhao, Zilong Wang, Xufang Luo, Feng Chen, Kang Wang, Chuanfu Wu, Xue Zhang, Shaoting Zhang, Jiaxi Yao, Xingwei Jin, Xinyang Jiang, Yifan Yang, Dongsheng Li, Lili Qiu, Zhiqiang Shao, Jianming Guo, Nengwang Yu, Shuo Wang, Ying Xiong

arxiv logopreprintAug 22 2025
The non-invasive assessment of increasingly incidentally discovered renal masses is a critical challenge in urologic oncology, where diagnostic uncertainty frequently leads to the overtreatment of benign or indolent tumors. In this study, we developed and validated RenalCLIP using a dataset of 27,866 CT scans from 8,809 patients across nine Chinese medical centers and the public TCIA cohort, a visual-language foundation model for characterization, diagnosis and prognosis of renal mass. The model was developed via a two-stage pre-training strategy that first enhances the image and text encoders with domain-specific knowledge before aligning them through a contrastive learning objective, to create robust representations for superior generalization and diagnostic precision. RenalCLIP achieved better performance and superior generalizability across 10 core tasks spanning the full clinical workflow of kidney cancer, including anatomical assessment, diagnostic classification, and survival prediction, compared with other state-of-the-art general-purpose CT foundation models. Especially, for complicated task like recurrence-free survival prediction in the TCIA cohort, RenalCLIP achieved a C-index of 0.726, representing a substantial improvement of approximately 20% over the leading baselines. Furthermore, RenalCLIP's pre-training imparted remarkable data efficiency; in the diagnostic classification task, it only needs 20% training data to achieve the peak performance of all baseline models even after they were fully fine-tuned on 100% of the data. Additionally, it achieved superior performance in report generation, image-text retrieval and zero-shot diagnosis tasks. Our findings establish that RenalCLIP provides a robust tool with the potential to enhance diagnostic accuracy, refine prognostic stratification, and personalize the management of patients with kidney cancer.

Development and Validation of an Interpretable Machine Learning Model for Predicting Adverse Clinical Outcomes in Placenta Accreta Spectrum: A Multicenter Study.

Li H, Zhang Y, Mei H, Yuan Y, Wang L, Liu W, Zeng H, Huang J, Chai X, Wu K, Liu H

pubmed logopapersAug 22 2025
Placenta accreta spectrum (PAS) is a serious perinatal complication. Accurate preoperative identification of patients at high risk for adverse clinical outcomes is essential for developing personalized treatment strategies. This study aimed to develop and validate a high-performance, interpretable machine learning model that integrates MRI morphological indicators and clinical features to predict adverse outcomes in PAS, and to build an online prediction tool to enhance its clinical applicability. This retrospective study included 125 clinically confirmed PAS patients from two centers, categorized into high-risk (intraoperative blood loss over 1500 mL or requiring hysterectomy) and low-risk groups. Data from Center 1 were used for model development, and data from Center 2 served as the external validation set. Five MRI morphological indicators and six clinical features were extracted as model inputs. Three machine learning classifiers-AdaBoost, TabPFN, and CatBoost-were trained and evaluated on both internal testing and external validation cohorts. SHAP analysis was used to interpret model decision-making, and the optimal model was deployed via a Streamlit-based web platform. The CatBoost model achieved the best performance, with AUROCs of 0.90 (95% CI: 0.73-0.99) and 0.84 (95% CI: 0.70-0.97) in the internal testing and external validation sets, respectively. Calibration curves indicated strong agreement between predicted and actual risks. SHAP analysis revealed that "Cervical canal length" and "Gestational age" contributed negatively to high-risk predictions, while "Prior C-sections number", "Placental abnormal vasculature area", and Parturition were positively associated. The final online tool allows real-time risk prediction and visualization of individualized force plots and is freely accessible to clinicians and patients. This study successfully developed an interpretable and practical machine learning model for predicting adverse clinical outcomes in PAS. The accompanying online tool may support clinical decision-making and improve individualized management for PAS patients.

Edge-Aware Diffusion Segmentation Model with Hessian Priors for Automated Diaphragm Thickness Measurement in Ultrasound Imaging.

Miao CL, He Y, Shi B, Bian Z, Yu W, Chen Y, Zhou GQ

pubmed logopapersAug 22 2025
The thickness of the diaphragm serves as a crucial biometric indicator, particularly in assessing rehabilitation and respiratory dysfunction. However, measuring diaphragm thickness from ultrasound images mainly depends on manual delineation of the fascia, which is subjective, time-consuming, and sensitive to the inherent speckle noise. In this study, we introduce an edge-aware diffusion segmentation model (ESADiff), which incorporates prior structural knowledge of the fascia to improve the accuracy and reliability of diaphragm thickness measurements in ultrasound imaging. We first apply a diffusion model, guided by annotations, to learn the image features while preserving edge details through an iterative denoising process. Specifically, we design an anisotropic edge-sensitive annotation refinement module that corrects inaccurate labels by integrating Hessian geometric priors with a backtracking shortest-path connection algorithm, further enhancing model accuracy. Moreover, a curvature-aware deformable convolution and edge-prior ranking loss function are proposed to leverage the shape prior knowledge of the fascia, allowing the model to selectively focus on relevant linear structures while mitigating the influence of noise on feature extraction. We evaluated the proposed model on an in-house diaphragm ultrasound dataset, a public calf muscle dataset, and an internal tongue muscle dataset to demonstrate robust generalization. Extensive experimental results demonstrate that our method achieves finer fascia segmentation and significantly improves the accuracy of thickness measurements compared to other state-of-the-art techniques, highlighting its potential for clinical applications.

Diagnostic performance of T1-Weighted MRI gray matter biomarkers in Parkinson's disease: A systematic review and meta-analysis.

Torres-Parga A, Gershanik O, Cardona S, Guerrero J, Gonzalez-Ojeda LM, Cardona JF

pubmed logopapersAug 22 2025
T1-weighted structural MRI has advanced our understanding of Parkinson's disease (PD), yet its diagnostic utility in clinical settings remains unclear. To assess the diagnostic performance of T1-weighted MRI gray matter (GM) metrics in distinguishing PD patients from healthy controls and to identify limitations affecting clinical applicability. A systematic review and meta-analysis were conducted on studies reporting sensitivity, specificity, or AUC for PD classification using T1-weighted MRI. Of 2906 screened records, 26 met inclusion criteria, and 10 provided sufficient data for quantitative synthesis. The risk of bias and heterogeneity were evaluated, and sensitivity analyses were performed by excluding influential studies. Pooled estimates showed a sensitivity of 0.71 (95 % CI: 0.70-0.72), specificity of 0.889 (95 % CI: 0.86-0.92), and overall accuracy of 0.909 (95 % CI: 0.89-0.93). These metrics improved after excluding outliers, reducing heterogeneity (I<sup>2</sup> = 95.7 %-0 %). Frequently reported regions showing structural alterations included the substantia nigra, striatum, thalamus, medial temporal cortex, and middle frontal gyrus. However, region-specific diagnostic metrics could not be consistently synthesized due to methodological variability. Machine learning approaches, particularly support vector machines and neural networks, showed enhanced performance with appropriate validation. T1-weighted MRI gray matter metrics demonstrate moderate accuracy in differentiating PD from controls but are not yet suitable as standalone diagnostic tools. Greater methodological standardization, external validation, and integration with clinical and biological data are needed to support precision neurology and clinical translation.

Towards Diagnostic Quality Flat-Panel Detector CT Imaging Using Diffusion Models

Hélène Corbaz, Anh Nguyen, Victor Schulze-Zachau, Paul Friedrich, Alicia Durrer, Florentin Bieder, Philippe C. Cattin, Marios N Psychogios

arxiv logopreprintAug 22 2025
Patients undergoing a mechanical thrombectomy procedure usually have a multi-detector CT (MDCT) scan before and after the intervention. The image quality of the flat panel detector CT (FDCT) present in the intervention room is generally much lower than that of a MDCT due to significant artifacts. However, using only FDCT images could improve patient management as the patient would not need to be moved to the MDCT room. Several studies have evaluated the potential use of FDCT imaging alone and the time that could be saved by acquiring the images before and/or after the intervention only with the FDCT. This study proposes using a denoising diffusion probabilistic model (DDPM) to improve the image quality of FDCT scans, making them comparable to MDCT scans. Clinicans evaluated FDCT, MDCT, and our model's predictions for diagnostic purposes using a questionnaire. The DDPM eliminated most artifacts and improved anatomical visibility without reducing bleeding detection, provided that the input FDCT image quality is not too low. Our code can be found on github.

Extrapolation Convolution for Data Prediction on a 2-D Grid: Bridging Spatial and Frequency Domains With Applications in Image Outpainting and Compressed Sensing.

Ibrahim V, Alaya Cheikh F, Asari VK, Paul JS

pubmed logopapersAug 22 2025
Extrapolation plays a critical role in machine/deep learning (ML/DL), enabling models to predict data points beyond their training constraints, particularly useful in scenarios deviating significantly from training conditions. This article addresses the limitations of current convolutional neural networks (CNNs) in extrapolation tasks within image restoration and compressed sensing (CS). While CNNs show potential in tasks such as image outpainting and CS, traditional convolutions are limited by their reliance on interpolation, failing to fully capture the dependencies needed for predicting values outside the known data. This work proposes an extrapolation convolution (EC) framework that models missing data prediction as an extrapolation problem using linear prediction within DL architectures. The approach is applied in two domains: first, image outpainting, where EC in encoder-decoder (EnDec) networks replaces conventional interpolation methods to reduce artifacts and enhance fine detail representation; second, Fourier-based CS-magnetic resonance imaging (CS-MRI), where it predicts high-frequency signal values from undersampled measurements in the frequency domain, improving reconstruction quality and preserving subtle structural details at high acceleration factors. Comparative experiments demonstrate that the proposed EC-DecNet and FDRN outperform traditional CNN-based models, achieving high-quality image reconstruction with finer details, as shown by improved peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and kernel inception distance (KID)/Frechet inception distance (FID) scores. Ablation studies and analysis highlight the effectiveness of larger kernel sizes and multilevel semi-supervised learning in FDRN for enhancing extrapolation accuracy in the frequency domain.

The impact of a neuroradiologist on the report of a real-world CT perfusion imaging map derived by AI/ML-driven software.

De Rubeis G, Stasolla A, Piccoli C, Federici M, Cozzolino V, Lovullo G, Leone E, Pesapane F, Fabiano S, Bertaccini L, Pingi A, Galluzzo M, Saba L, Pampana E

pubmed logopapersAug 22 2025
According to guideline the computed tomography perfusion (CTP) should read and analysis using computer-aided software. This study evaluates the efficacy of AI/ML (machine learning) -driven software in CTP imaging and the effect of neuroradiologists interpretation of these automated results. We conducted a retrospective, single-center cohort study from June to December 2023 at a comprehensive stroke center. A total of 132 patients suspected of acute ischemic stroke underwent CTP using. The AI software RAPID.AI was utilized for initial analysis, with subsequent validation and adjustments made by experienced neuroradiologists. The rate of CTP marked as "non reportable", "reportable" and "reportable with correction" by neuroradiologist was recorded. The degree of confidence in the report of basal and angio-CT scan was assessed before and after CTP visualization. Statistical analysis included logistic regression and F1 score assessments to evaluate the predictive accuracy of AI-generated CTP maps RESULTS: The study found that CTP maps derived from AI software were reportable in 65.2% of cases without artifacts, improved to 87.9% reportable cases when reviewed by neuroradiologists. Key predictive factors for artifact-free CTP maps included motion parameters and the timing of contrast peak distances. There was a significant shift to higher confidence scores of the angiographic phase of the CT after the result of CTP CONCLUSIONS: Neuroradiologists play an indispensable role in enhancing the reliability of CTP imaging by interpreting and correcting AI-processed maps. CTP=computed tomography perfusion; AI/ML= Artificial Intelligence/Machine Learning; LVO = Large vessel occlusion.

Dedicated prostate DOI-TOF-PET based on the ProVision detection concept.

Vo HP, Williams T, Doroud K, Williams C, Rafecas M

pubmed logopapersAug 22 2025
The ProVision scanner is a dedicated prostate PET system with limited angular coverage; it employs a new detector technology that provides high spatial resolution as well as information about depth-of-interaction (DOI) and time-of-flight (TOF). The goal of this work is to develop a flexible image reconstruction framework and study the image performance of the current ProVision scanners.&#xD;Approach: Experimental datasets, including point-like sources, an image quality phantom, and a pelvic phantom, were acquired using the ProVision scanner to investigate the impact of oblique lines of response introduced via a multi-offset scanning protocol. This approach aims to mitigate data truncation artifacts and further characterise the current imaging performance of the system. For image reconstruction, we applied the list-mode Maximum Likelihood Expectation Maximisation algorithm incorporating TOF information. The system matrix and sensitivity models account for both detector attenuation and position uncertainty.&#xD;Main Results: The scanner provides good spatial resolution on the coronal plane; however, elongations caused by the limited angular coverage distort the reconstructed images. The availability of TOF and DOI information, as well as the addition of a multi-offset scanning protocol, could not fully compensate for these distortions.&#xD;Significance: The ProVision scanner concept, with innovative detector technology, shows promising outcomes for fast and inexpensive PET without CT. Despite current limitations due to limited angular coverage, which leads to image distortions, ongoing advancements, such as improved timing resolution, regularisation techniques, and artificial intelligence, are expected to significantly reduce these artifacts and enhance image quality.

Towards Diagnostic Quality Flat-Panel Detector CT Imaging Using Diffusion Models

Hélène Corbaz, Anh Nguyen, Victor Schulze-Zachau, Paul Friedrich, Alicia Durrer, Florentin Bieder, Philippe C. Cattin, Marios N Psychogios

arxiv logopreprintAug 22 2025
Patients undergoing a mechanical thrombectomy procedure usually have a multi-detector CT (MDCT) scan before and after the intervention. The image quality of the flat panel detector CT (FDCT) present in the intervention room is generally much lower than that of a MDCT due to significant artifacts. However, using only FDCT images could improve patient management as the patient would not need to be moved to the MDCT room. Several studies have evaluated the potential use of FDCT imaging alone and the time that could be saved by acquiring the images before and/or after the intervention only with the FDCT. This study proposes using a denoising diffusion probabilistic model (DDPM) to improve the image quality of FDCT scans, making them comparable to MDCT scans. Clinicans evaluated FDCT, MDCT, and our model's predictions for diagnostic purposes using a questionnaire. The DDPM eliminated most artifacts and improved anatomical visibility without reducing bleeding detection, provided that the input FDCT image quality is not too low. Our code can be found on github.

Application of contrast-enhanced CT-driven multimodal machine learning models for pulmonary metastasis prediction in head and neck adenoid cystic carcinoma.

Gong W, Cui Q, Fu S, Wu Y

pubmed logopapersAug 22 2025
This study explores radiomics and deep learning for predicting pulmonary metastasis in head and neck Adenoid Cystic Carcinoma (ACC), assessing machine learning(ML) algorithms' model performance. The study retrospectively analyzed contrast-enhanced CT imaging data and clinical records from 130 patients with pathologically confirmed ACC in the head and neck region. The dataset was randomly split into training and test sets at a 7:3 ratio. Radiomic features and deep learning-derived features were extracted and subsequently integrated through multi-feature fusion. Z-score normalization was applied to training and test sets. Hypothesis testing selected significant features, followed by LASSO regression (5-fold CV) identifying 7 predictive features. Nine machine learning algorithms were employed to build predictive models for ACC pulmonary metastasis: ada, KNN, rf, NB, GLM, LDA, rpart, SVM-RBF, and GBM. Models were trained using the training set and tested on the test set. Model performance was evaluated using metrics such as recall, sensitivity, PPV, F1-score, precision, prevalence, NPV, specificity, accuracy, detection rate, detection prevalence, and balanced accuracy. Machine learning models based on multi-feature fusion of enhanced CT, utilizing KNN, SVM, rpart, GBM, NB, GLM, and LDA, demonstrated AUC values in the test set of 0.687, 0.863, 0.737, 0.793, 0.763, 0.867, and 0.844, respectively. Rf and ada showed significant overfitting. Among these, GBM and GLM showed higher stability in predicting pulmonary metastasis of head and neck ACC. Radiomics and deep learning methods based on enhanced CT imaging can provide effective auxiliary tools for predicting pulmonary metastasis in head and neck ACC patients, showing promising potential for clinical application.
Page 65 of 3463455 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.