Sort by:
Page 6 of 654 results

RADAR: Enhancing Radiology Report Generation with Supplementary Knowledge Injection

Wenjun Hou, Yi Cheng, Kaishuai Xu, Heng Li, Yan Hu, Wenjie Li, Jiang Liu

arxiv logopreprintMay 20 2025
Large language models (LLMs) have demonstrated remarkable capabilities in various domains, including radiology report generation. Previous approaches have attempted to utilize multimodal LLMs for this task, enhancing their performance through the integration of domain-specific knowledge retrieval. However, these approaches often overlook the knowledge already embedded within the LLMs, leading to redundant information integration and inefficient utilization of learned representations. To address this limitation, we propose RADAR, a framework for enhancing radiology report generation with supplementary knowledge injection. RADAR improves report generation by systematically leveraging both the internal knowledge of an LLM and externally retrieved information. Specifically, it first extracts the model's acquired knowledge that aligns with expert image-based classification outputs. It then retrieves relevant supplementary knowledge to further enrich this information. Finally, by aggregating both sources, RADAR generates more accurate and informative radiology reports. Extensive experiments on MIMIC-CXR, CheXpert-Plus, and IU X-ray demonstrate that our model outperforms state-of-the-art LLMs in both language quality and clinical accuracy

MedBLIP: Fine-tuning BLIP for Medical Image Captioning

Manshi Limbu, Diwita Banerjee

arxiv logopreprintMay 20 2025
Medical image captioning is a challenging task that requires generating clinically accurate and semantically meaningful descriptions of radiology images. While recent vision-language models (VLMs) such as BLIP, BLIP2, Gemini and ViT-GPT2 show strong performance on natural image datasets, they often produce generic or imprecise captions when applied to specialized medical domains. In this project, we explore the effectiveness of fine-tuning the BLIP model on the ROCO dataset for improved radiology captioning. We compare the fine-tuned BLIP against its zero-shot version, BLIP-2 base, BLIP-2 Instruct and a ViT-GPT2 transformer baseline. Our results demonstrate that domain-specific fine-tuning on BLIP significantly improves performance across both quantitative and qualitative evaluation metrics. We also visualize decoder cross-attention maps to assess interpretability and conduct an ablation study to evaluate the contributions of encoder-only and decoder-only fine-tuning. Our findings highlight the importance of targeted adaptation for medical applications and suggest that decoder-only fine-tuning (encoder-frozen) offers a strong performance baseline with 5% lower training time than full fine-tuning, while full model fine-tuning still yields the best results overall.

Participatory Co-Creation of an AI-Supported Patient Information System: A Multi-Method Qualitative Study.

Heizmann C, Gleim P, Kellmeyer P

pubmed logopapersMay 15 2025
In radiology and other medical fields, informed consent often rely on paper-based forms, which can overwhelm patients with complex terminology. These forms are also resource-intensive. The KIPA project addresses these challenges by developing an AI-assisted patient information system to streamline the consent process, improve patient understanding, and reduce healthcare workload. The KIPA system uses natural language processing (NLP) to provide real-time, accessible explanations, answer questions, and support informed consent. KIPA follows an 'ethics-by-design' approach, integrating user feedback to align with patient and clinician needs. Interviews and usability testing identified requirements, such as simplified language and support for varying digital literacy. The study presented here explores the participatory co-creation of the KIPA system, focusing on improving informed consent in radiology through a multi-method qualitative approach. Preliminary results suggest that KIPA improves patient engagement and reduces insecurities by providing proactive guidance and tailored information. Future work will extend testing to other stakeholders and assess the impact of the system on clinical workflow.

A survey of deep-learning-based radiology report generation using multimodal inputs.

Wang X, Figueredo G, Li R, Zhang WE, Chen W, Chen X

pubmed logopapersMay 13 2025
Automatic radiology report generation can alleviate the workload for physicians and minimize regional disparities in medical resources, therefore becoming an important topic in the medical image analysis field. It is a challenging task, as the computational model needs to mimic physicians to obtain information from multi-modal input data (i.e., medical images, clinical information, medical knowledge, etc.), and produce comprehensive and accurate reports. Recently, numerous works have emerged to address this issue using deep-learning-based methods, such as transformers, contrastive learning, and knowledge-base construction. This survey summarizes the key techniques developed in the most recent works and proposes a general workflow for deep-learning-based report generation with five main components, including multi-modality data acquisition, data preparation, feature learning, feature fusion and interaction, and report generation. The state-of-the-art methods for each of these components are highlighted. Additionally, we summarize the latest developments in large model-based methods and model explainability, along with public datasets, evaluation methods, current challenges, and future directions in this field. We have also conducted a quantitative comparison between different methods in the same experimental setting. This is the most up-to-date survey that focuses on multi-modality inputs and data fusion for radiology report generation. The aim is to provide comprehensive and rich information for researchers interested in automatic clinical report generation and medical image analysis, especially when using multimodal inputs, and to assist them in developing new algorithms to advance the field.
Page 6 of 654 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.