Sort by:
Page 6 of 28271 results

CT derived fractional flow reserve: Part 1 - Comprehensive review of methodologies.

Shaikh K, Lozano PR, Evangelou S, Wu EH, Nurmohamed NS, Madan N, Verghese D, Shekar C, Waheed A, Siddiqui S, Kolossváry M, Almeida S, Coombes T, Suchá D, Trivedi SJ, Ihdayhid AR

pubmed logopapersJul 18 2025
Advancements in cardiac computed tomography angiography (CCTA) have enabled the extraction of physiological data from an anatomy-based imaging modality. This review outlines the key methodologies for deriving fractional flow reserve (FFR) from CCTA, with a focus on two primary methods: 1) computational fluid dynamics-based FFR (CT-FFR) and 2) plaque-derived ischemia assessment using artificial intelligence and quantitative plaque metrics. These techniques have expanded the role of CCTA beyond anatomical assessment, allowing for concurrent evaluation of coronary physiology without the need for invasive testing. This review provides an overview of the principles, workflows, and limitations of each technique and aims to inform on the current state and future direction of non-invasive coronary physiology assessment.

Multi-modal Risk Stratification in Heart Failure with Preserved Ejection Fraction Using Clinical and CMR-derived Features: An Approach Incorporating Model Explainability.

Zhang S, Lin Y, Han D, Pan Y, Geng T, Ge H, Zhao J

pubmed logopapersJul 17 2025
Heart failure with preserved ejection fraction (HFpEF) poses significant diagnostic and prognostic challenges due to its clinical heterogeneity. This study proposes a multi-modal, explainable machine learning framework that integrates clinical variables and cardiac magnetic resonance (CMR)-derived features, particularly epicardial adipose tissue (EAT) volume, to improve risk stratification and outcome prediction in patients with HFpEF. A retrospective cohort of 301 participants (171 in the HFpEF group and 130 in the control group) was analyzed. Baseline characteristics, CMR-derived EAT volume, and laboratory biomarkers were integrated into machine learning models. Model performance was evaluated using accuracy, precision, recall, and F1-score. Additionally, receiver operating characteristic area under the curve (ROC-AUC) and precision-recall area under the curve (PR-AUC) were employed to assess discriminative power across varying decision thresholds. Hyperparameter optimization and ensemble techniques were applied to enhance predictive performance. HFpEF patients exhibited significantly higher EAT volume (70.9±27.3 vs. 41.9±18.3 mL, p<0.001) and NT-proBNP levels (1574 [963,2722] vs. 33 [10,100] pg/mL, p<0.001), along with a greater prevalence of comorbidities. The voting classifier demonstrated the highest accuracy for HFpEF diagnosis (0.94), with a precision of 0.96, recall of 0.94, and an F1-score of 0.95. For prognostic tasks, AdaBoost, XGBoost and Random Forest yielded superior performance in predicting adverse clinical outcomes, including rehospitalization and all-cause mortality (accuracy: 0.95). Key predictive features identified included EAT volume, right atrioventricular groove (Right AVG), tricuspid regurgitation velocity (TRV), and metabolic syndrome. Explainable models combining clinical and CMR-derived features, especially EAT volume, improve support for HFpEF diagnosis and outcome prediction. These findings highlight the value of a data-driven, interpretable approach to characterizing HFpEF phenotypes and may facilitate individualized risk assessment in selected populations.

Automatic selection of optimal TI for flow-independent dark-blood delayed-enhancement MRI.

Popescu AB, Rehwald W, Wendell D, Chevalier C, Itu LM, Suciu C, Chitiboi T

pubmed logopapersJul 17 2025
Propose and evaluate an automatic approach for predicting the optimal inversion time (TI) for dark and gray blood images for flow-independent dark-blood delayed-enhancement (FIDDLE) acquisition based on free-breathing FIDDLE TI-scout images. In 267 patients, the TI-scout sequence acquired single-shot magnetization-prepared and associated reference images (without preparation) on a 3 T Magnetom Vida and a 1.5 T Magnetom Sola scanner. Data were reconstructed into phase-corrected TI-scout images typically covering TIs from 140 to 440 ms (20 ms increment). A deep learning network was trained to segment the myocardium and blood pool in reference images. These segmentation masks were transferred to the TI-scout images to derive intensity features of myocardium and blood, with which T<sub>1</sub>-recovery curves were determined by logarithmic fitting. The optimal TI for dark and gray blood images were derived as linear functions of the TI in which both T<sub>1</sub>-curves cross. This TI-prediction pipeline was evaluated in 64 clinical subjects. The pipeline predicted optimal TIs with an average error less than 10 ms compared to manually annotated optimal TIs. The presented approach reliably and automatically predicted optimal TI for dark and gray blood FIDDLE acquisition, with an average error less than the TI increment of the FIDDLE TI-scout sequence.

Cardiac Function Assessment with Deep-Learning-Based Automatic Segmentation of Free-Running 4D Whole-Heart CMR

Ogier, A. C., Baup, S., Ilanjian, G., Touray, A., Rocca, A., Banus Cobo, J., Monton Quesada, I., Nicoletti, M., Ledoux, J.-B., Richiardi, J., Holtackers, R. J., Yerly, J., Stuber, M., Hullin, R., Rotzinger, D., van Heeswijk, R. B.

medrxiv logopreprintJul 17 2025
BackgroundFree-running (FR) cardiac MRI enables free-breathing ECG-free fully dynamic 5D (3D spatial+cardiac+respiration dimensions) imaging but poses significant challenges for clinical integration due to the volume and complexity of image analysis. Existing segmentation methods are tailored to 2D cine or static 3D acquisitions and cannot leverage the unique spatial-temporal wealth of FR data. PurposeTo develop and validate a deep learning (DL)-based segmentation framework for isotropic 3D+cardiac cycle FR cardiac MRI that enables accurate, fast, and clinically meaningful anatomical and functional analysis. MethodsFree-running, contrast-free bSSFP acquisitions at 1.5T and contrast-enhanced GRE acquisitions at 3T were used to reconstruct motion-resolved 5D datasets. From these, the end-expiratory respiratory phase was retained to yield fully isotropic 4D datasets. Automatic propagation of a limited set of manual segmentations was used to segment the left and right ventricular blood pool (LVB, RVB) and left ventricular myocardium (LVM) on reformatted short-axis (SAX) end-systolic (ES) and end-diastolic (ED) images. These were used to train a 3D nnU-Net model. Validation was performed using geometric metrics (Dice similarity coefficient [DSC], relative volume difference [RVD]), clinical metrics (ED and ES volumes, ejection fraction [EF]), and physiological consistency metrics (systole-diastole LVM volume mismatch and LV-RV stroke volume agreement). To assess the robustness and flexibility of the approach, we evaluated multiple additional DL training configurations such as using 4D propagation-based data augmentation to incorporate all cardiac phases into training. ResultsThe main proposed method achieved automatic segmentation within a minute, delivering high geometric accuracy and consistency (DSC: 0.94 {+/-} 0.01 [LVB], 0.86 {+/-} 0.02 [LVM], 0.92 {+/-} 0.01 [RVB]; RVD: 2.7%, 5.8%, 4.5%). Clinical LV metrics showed excellent agreement (ICC > 0.98 for EDV/ESV/EF, bias < 2 mL for EDV/ESV, < 1% for EF), while RV metrics remained clinically reliable (ICC > 0.93 for EDV/ESV/EF, bias < 1 mL for EDV/ESV, < 1% for EF) but exhibited wider limits of agreement. Training on all cardiac phases improved temporal coherence, reducing LVM volume mismatch from 4.0% to 2.6%. ConclusionThis study validates a DL-based method for fast and accurate segmentation of whole-heart free-running 4D cardiac MRI. Robust performance across diverse protocols and evaluation with complementary metrics that match state-of-the-art benchmarks supports its integration into clinical and research workflows, helping to overcome a key barrier to the broader adoption of free-running imaging.

Myocardial Native T1 Mapping in the German National Cohort (NAKO): Associations with Age, Sex, and Cardiometabolic Risk Factors

Ammann, C., Gröschel, J., Saad, H., Rospleszcz, S., Schuppert, C., Hadler, T., Hickstein, R., Niendorf, T., Nolde, J. M., Schulze, M. B., Greiser, K. H., Decker, J. A., Kröncke, T., Küstner, T., Nikolaou, K., Willich, S. N., Keil, T., Dörr, M., Bülow, R., Bamberg, F., Pischon, T., Schlett, C. L., Schulz-Menger, J.

medrxiv logopreprintJul 17 2025
Background and AimsIn cardiovascular magnetic resonance (CMR), myocardial native T1 mapping enables quantitative, non-invasive tissue characterization and is sensitive to subclinical changes in myocardial structure and composition. We investigated how age, sex, and cardiometabolic risk factors are associated with myocardial T1 in a population-based analysis within the German National Cohort (NAKO). MethodsThis cross-sectional study included 29,573 prospectively enrolled participants who underwent CMR-based midventricular T1 mapping at 3.0 T, alongside clinical phenotyping. After artificial intelligence-assisted myocardial segmentation, a subset of 9,162 outliers was subjected to manual quality control according to clinical evaluation standards. Associations with cardiometabolic risk factors, identified through self-reported medical history, clinical chemistry, and blood pressure measurements, were evaluated using adjusted linear regression models. ResultsWomen had higher T1 values than men, with sex differences progressively declining with age. T1 was significantly elevated in individuals with diabetes ({beta}=3.91 ms; p<0.001), kidney disease ({beta}=3.44 ms; p<0.001), and current smoking ({beta}=6.67 ms; p<0.001). Conversely, hyperlipidaemia was significantly associated with lower T1 ({beta}=-4.41 ms; p<0.001). Associations with hypertension showed a sex-specific pattern: T1 was lower in women but increased with hypertension severity in men. ConclusionsMyocardial native T1 varies by sex and age and shows associations with major cardiometabolic risk factors. Notably, lower T1 times in participants with hyperlipidaemia may indicate a direct effect of blood lipids on the heart. Our findings support the utility of T1 mapping as a sensitive marker of early myocardial changes and highlight the sex-specific interplay between cardiometabolic health and myocardial tissue composition. Graphical Abstract O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=139 SRC="FIGDIR/small/25331651v1_ufig1.gif" ALT="Figure 1"> View larger version (44K): [email protected]@131514borg.highwire.dtl.DTLVardef@d03877org.highwire.dtl.DTLVardef@2b2fec_HPS_FORMAT_FIGEXP M_FIG C_FIG Key QuestionHow are age, sex, and cardiometabolic risk factors associated with myocardial native T1, a quantitative magnetic resonance imaging marker of myocardial tissue composition, in a large-scale population-based evaluation within the German National Cohort (NAKO)? Key FindingT1 relaxation times were higher in women and gradually converged between sexes with age. Diabetes, kidney disease, smoking, and hypertension in men were associated with prolonged T1 times. Unexpectedly, hyperlipidaemia and hypertension in women showed a negative association with T1. Take-Home MessageNative T1 mapping is sensitive to subclinical myocardial changes and reflects a close interplay between metabolic and myocardial health. It reveals marked age-dependent sex differences and sex-specific responses in myocardial tissue composition to cardiometabolic risk factors.

Acoustic Index: A Novel AI-Driven Parameter for Cardiac Disease Risk Stratification Using Echocardiography

Beka Begiashvili, Carlos J. Fernandez-Candel, Matías Pérez Paredes

arxiv logopreprintJul 17 2025
Traditional echocardiographic parameters such as ejection fraction (EF) and global longitudinal strain (GLS) have limitations in the early detection of cardiac dysfunction. EF often remains normal despite underlying pathology, and GLS is influenced by load conditions and vendor variability. There is a growing need for reproducible, interpretable, and operator-independent parameters that capture subtle and global cardiac functional alterations. We introduce the Acoustic Index, a novel AI-derived echocardiographic parameter designed to quantify cardiac dysfunction from standard ultrasound views. The model combines Extended Dynamic Mode Decomposition (EDMD) based on Koopman operator theory with a hybrid neural network that incorporates clinical metadata. Spatiotemporal dynamics are extracted from echocardiographic sequences to identify coherent motion patterns. These are weighted via attention mechanisms and fused with clinical data using manifold learning, resulting in a continuous score from 0 (low risk) to 1 (high risk). In a prospective cohort of 736 patients, encompassing various cardiac pathologies and normal controls, the Acoustic Index achieved an area under the curve (AUC) of 0.89 in an independent test set. Cross-validation across five folds confirmed the robustness of the model, showing that both sensitivity and specificity exceeded 0.8 when evaluated on independent data. Threshold-based analysis demonstrated stable trade-offs between sensitivity and specificity, with optimal discrimination near this threshold. The Acoustic Index represents a physics-informed, interpretable AI biomarker for cardiac function. It shows promise as a scalable, vendor-independent tool for early detection, triage, and longitudinal monitoring. Future directions include external validation, longitudinal studies, and adaptation to disease-specific classifiers.

AortaDiff: Volume-Guided Conditional Diffusion Models for Multi-Branch Aortic Surface Generation

Delin An, Pan Du, Jian-Xun Wang, Chaoli Wang

arxiv logopreprintJul 17 2025
Accurate 3D aortic construction is crucial for clinical diagnosis, preoperative planning, and computational fluid dynamics (CFD) simulations, as it enables the estimation of critical hemodynamic parameters such as blood flow velocity, pressure distribution, and wall shear stress. Existing construction methods often rely on large annotated training datasets and extensive manual intervention. While the resulting meshes can serve for visualization purposes, they struggle to produce geometrically consistent, well-constructed surfaces suitable for downstream CFD analysis. To address these challenges, we introduce AortaDiff, a diffusion-based framework that generates smooth aortic surfaces directly from CT/MRI volumes. AortaDiff first employs a volume-guided conditional diffusion model (CDM) to iteratively generate aortic centerlines conditioned on volumetric medical images. Each centerline point is then automatically used as a prompt to extract the corresponding vessel contour, ensuring accurate boundary delineation. Finally, the extracted contours are fitted into a smooth 3D surface, yielding a continuous, CFD-compatible mesh representation. AortaDiff offers distinct advantages over existing methods, including an end-to-end workflow, minimal dependency on large labeled datasets, and the ability to generate CFD-compatible aorta meshes with high geometric fidelity. Experimental results demonstrate that AortaDiff performs effectively even with limited training data, successfully constructing both normal and pathologically altered aorta meshes, including cases with aneurysms or coarctation. This capability enables the generation of high-quality visualizations and positions AortaDiff as a practical solution for cardiovascular research.

Late gadolinium enhancement imaging and sudden cardiac death.

Prasad SK, Akbari T, Bishop MJ, Halliday BP, Leyva-Leon F, Marchlinski F

pubmed logopapersJul 16 2025
The prediction and management of sudden cardiac death risk continue to pose significant challenges in cardiovascular care despite advances in therapies over the last two decades. Late gadolinium enhancement (LGE) on cardiac magnetic resonance-a marker of myocardial fibrosis-is a powerful non-invasive tool with the potential to aid the prediction of sudden death and direct the use of preventative therapies in several cardiovascular conditions. In this state-of-the-art review, we provide a critical appraisal of the current evidence base underpinning the utility of LGE in both ischaemic and non-ischaemic cardiomyopathies together with a focus on future perspectives and the role for machine learning and digital twin technologies.

Validation of artificial intelligence software for automatic calcium scoring in cardiac and chest computed tomography.

Hamelink II, Nie ZZ, Severijn TEJT, van Tuinen MM, van Ooijen PMAP, Kwee TCT, Dorrius MDM, van der Harst PP, Vliegenthart RR

pubmed logopapersJul 16 2025
Coronary artery calcium scoring (CACS), i.e. quantification of Agatston (AS) or volume score (VS), can be time consuming. The aim of this study was to compare automated, artificial intelligence (AI)-based CACS to manual scoring, in cardiac and chest CT for lung cancer screening. We selected 684 participants (59 ± 4.8 years; 48.8 % men) who underwent cardiac and non-ECG-triggered chest CT, including 484 participants with AS > 0 on cardiac CT. AI-based results were compared to manual AS and VS, by assessing sensitivity and accuracy, intraclass correlation coefficient (ICC), Bland-Altman analysis and Cohen's kappa for classification in AS strata (0;1-99;100-299;≥300). AI showed high CAC detection rate: 98.1% in cardiac CT (accuracy 97.1%) and 92.4% in chest CT (accuracy 92.1%). AI showed excellent agreement with manual AS (ICC:0.997 and 0.992) and manual VS (ICC:0.997 and 0.991), in cardiac CT and chest CT, respectively. In Bland-Altman analysis, there was a mean difference of 2.3 (limits of agreement (LoA):-42.7, 47.4) for AS on cardiac CT; 1.9 (LoA:-36.4, 40.2) for VS on cardiac CT; -0.3 (LoA:-74.8, 74.2) for AS on chest CT; and -0.6 (LoA:-65.7, 64.5) for VS on chest CT. Cohen's kappa was 0.952 (95%CI:0.934-0.970) for cardiac CT and 0.901 (95%CI:0.875-0.926) for chest CT, with concordance in 95.9 and 91.4% of cases, respectively. AI-based CACS shows high detection rate and strong correlation compared to manual CACS, with excellent risk classification agreement. AI may reduce evaluation time and enable opportunistic screening for CAC on low-dose chest CT.

Automated CAD-RADS scoring from multiplanar CCTA images using radiomics-driven machine learning.

Corti A, Ronchetti F, Lo Iacono F, Chiesa M, Colombo G, Annoni A, Baggiano A, Carerj ML, Del Torto A, Fazzari F, Formenti A, Junod D, Mancini ME, Maragna R, Marchetti F, Sbordone FP, Tassetti L, Volpe A, Mushtaq S, Corino VDA, Pontone G

pubmed logopapersJul 16 2025
Coronary Artery Disease-Reporting and Data System (CAD-RADS), a standardized reporting system of stenosis severity from coronary computed tomography angiography (CCTA), is performed manually by expert radiologists, being time-consuming and prone to interobserver variability. While deep learning methods automating CAD-RADS scoring have been proposed, radiomics-based machine-learning approaches are lacking, despite their improved interpretability. This study aims to introduce a novel radiomics-based machine-learning approach for automating CAD-RADS scoring from CCTA images with multiplanar reconstruction. This retrospective monocentric study included 251 patients (male 70 %; mean age 60.5 ± 12.7) who underwent CCTA in 2016-2018 for clinical evaluation of CAD. Images were automatically segmented, and radiomic features were extracted. Clinical characteristics were collected. The image dataset was partitioned into training and test sets (90 %-10 %). The training phase encompassed feature scaling and selection, data balancing and model training within a 5-fold cross-validation. A cascade pipeline was implemented for both 6-class CAD-RADS scoring and 4-class therapy-oriented classification (0-1, 2, 3-4, 5), through consecutive sub-tasks. For each classification task the cascade pipeline was applied to develop clinical, radiomic, and combined models. The radiomic, combined and clinical models yielded AUC = 0.88 [0.86-0.88], AUC = 0.90 [0.88-0.90], and AUC = 0.66 [0.66-0.67] for the CAD-RADS scoring, and AUC = 0.93 [0.91-0.93], AUC = 0.97 [0.96-0.97], and AUC = 79 [0.78-0.79] for the therapy-oriented classification. The radiomic and combined models significantly outperformed (DeLong p-value < 0.05) the clinical one in class 1 and 2 (CAD-RADS cascade) and class 2 (therapy-oriented cascade). This study represents the first CAD-RADS classification radiomic model, guaranteeing higher explainability and providing a promising support system in coronary artery stenosis assessment.
Page 6 of 28271 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.