Sort by:
Page 53 of 56557 results

Evaluating an information theoretic approach for selecting multimodal data fusion methods.

Zhang T, Ding R, Luong KD, Hsu W

pubmed logopapersMay 10 2025
Interest has grown in combining radiology, pathology, genomic, and clinical data to improve the accuracy of diagnostic and prognostic predictions toward precision health. However, most existing works choose their datasets and modeling approaches empirically and in an ad hoc manner. A prior study proposed four partial information decomposition (PID)-based metrics to provide a theoretical understanding of multimodal data interactions: redundancy, uniqueness of each modality, and synergy. However, these metrics have only been evaluated in a limited collection of biomedical data, and the existing work does not elucidate the effect of parameter selection when calculating the PID metrics. In this work, we evaluate PID metrics on a wider range of biomedical data, including clinical, radiology, pathology, and genomic data, and propose potential improvements to the PID metrics. We apply the PID metrics to seven different modality pairs across four distinct cohorts (datasets). We compare and interpret trends in the resulting PID metrics and downstream model performance in these multimodal cohorts. The downstream tasks being evaluated include predicting the prognosis (either overall survival or recurrence) of patients with non-small cell lung cancer, prostate cancer, and glioblastoma. We found that, while PID metrics are informative, solely relying on these metrics to decide on a fusion approach does not always yield a machine learning model with optimal performance. Of the seven different modality pairs, three had poor (0%), three had moderate (66%-89%), and only one had perfect (100%) consistency between the PID values and model performance. We propose two improvements to the PID metrics (determining the optimal parameters and uncertainty estimation) and identified areas where PID metrics could be further improved. The current PID metrics are not accurate enough for estimating the multimodal data interactions and need to be improved before they can serve as a reliable tool. We propose improvements and provide suggestions for future work. Code: https://github.com/zhtyolivia/pid-multimodal.

Intra- and Peritumoral Radiomics Based on Ultrasound Images for Preoperative Differentiation of Follicular Thyroid Adenoma, Carcinoma, and Follicular Tumor With Uncertain Malignant Potential.

Fu Y, Mei F, Shi L, Ma Y, Liang H, Huang L, Fu R, Cui L

pubmed logopapersMay 10 2025
Differentiating between follicular thyroid adenoma (FTA), carcinoma (FTC), and follicular tumor with uncertain malignant potential (FT-UMP) remains challenging due to their overlapping ultrasound characteristics. This retrospective study aimed to enhance preoperative diagnostic accuracy by utilizing intra- and peritumoral radiomics based on ultrasound images. We collected post-thyroidectomy ultrasound images from 774 patients diagnosed with FTA (n = 429), FTC (n = 158), or FT-UMP (n = 187) between January 2018 and December 2023. Six peritumoral regions were expanded by 5%-30% in 5% increments, with the segment-anything model utilizing prompt learning to detect the field of view and constrain the expanded boundaries. A stepwise classification strategy addressing three tasks was implemented: distinguishing FTA from the other types (task 1), differentiating FTC from FT-UMP (task 2), and classifying all three tumors. Diagnostic models were developed by combining radiomic features from tumor and peritumoral regions with clinical characteristics. Clinical characteristics combined with intratumoral and 5% peritumoral radiomic features performed best across all tasks (Test set: area under the curves, 0.93 for task 1 and 0.90 for task 2; diagnostic accuracy, 79.9%). The DeLong test indicated that all peritumoral radiomics significantly improved intratumoral radiomics performance and clinical characteristics (p < 0.04). The 5% peritumoral regions showed the best performance, though not all results were significant (p = 0.01-0.91). Ultrasound-based intratumoral and peritumoral radiomics can significantly enhance preoperative diagnostic accuracy for FTA, FTC, and FT-UMP, leading to improved treatment strategies and patient outcomes. Furthermore, the 5% peritumoral area may indicate regions of potential tumor invasion requiring further investigation.

APD-FFNet: A Novel Explainable Deep Feature Fusion Network for Automated Periodontitis Diagnosis on Dental Panoramic Radiography.

Resul ES, Senirkentli GB, Bostanci E, Oduncuoglu BF

pubmed logopapersMay 9 2025
This study introduces APD-FFNet, a novel, explainable deep learning architecture for automated periodontitis diagnosis using panoramic radiographs. A total of 337 panoramic radiographs, annotated by a periodontist, served as the dataset. APD-FFNet combines custom convolutional and transformer-based layers within a deep feature fusion framework that captures both local and global contextual features. Performance was evaluated using accuracy, the F1 score, the area under the receiver operating characteristic curve, the Jaccard similarity coefficient, and the Matthews correlation coefficient. McNemar's test confirmed statistical significance, and SHapley Additive exPlanations provided interpretability insights. APD-FFNet achieved 94% accuracy, a 93.88% F1 score, 93.47% area under the receiver operating characteristic curve, 88.47% Jaccard similarity coefficient, and 88.46% Matthews correlation coefficient, surpassing comparable approaches. McNemar's test validated these findings (p < 0.05). Explanations generated by SHapley Additive exPlanations highlighted important regions in each radiograph, supporting clinical applicability. By merging convolutional and transformer-based layers, APD-FFNet establishes a new benchmark in automated, interpretable periodontitis diagnosis, with low hyperparameter sensitivity facilitating its integration into regular dental practice. Its adaptable design suggests broader relevance to other medical imaging domains. This is the first feature fusion method specifically devised for periodontitis diagnosis, supported by an expert-curated dataset and advanced explainable artificial intelligence. Its robust accuracy, low hyperparameter sensitivity, and transparent outputs set a new standard for automated periodontal analysis.

Multiparameter MRI-based model integrating radiomics and deep learning for preoperative staging of laryngeal squamous cell carcinoma.

Xie K, Jiang H, Chen X, Ning Y, Yu Q, Lv F, Liu R, Zhou Y, Xu L, Yue Q, Peng J

pubmed logopapersMay 9 2025
The accurate preoperative staging of laryngeal squamous cell carcinoma (LSCC) provides valuable guidance for clinical decision-making. The objective of this study was to establish a multiparametric MRI model using radiomics and deep learning (DL) to preoperatively distinguish between Stages I-II and III-IV of LSCC. Data from 401 histologically confirmed LSCC patients were collected from two centers (training set: 213; internal test set: 91; external test set: 97). Radiomics features were extracted from the MRI images, and seven radiomics models based on single and combined sequences were developed via random forest (RF). A DL model was constructed via ResNet 18, where DL features were extracted from its final fully connected layer. These features were fused with crucial radiomics features to create a combined model. The performance of the models was assessed using the area under the receiver operating characteristic (ROC) curve (AUC) and compared with the radiologist performances. The predictive capability of the combined model for Progression-Free Survival (PFS) was evaluated via Kaplan-Meier survival analysis and the Harrell's Concordance Index (C-index). In the external test set, the combined model had an AUC of 0.877 (95% CI 0.807-0.946), outperforming the DL model (AUC: 0.811) and the optimal radiomics model (AUC: 0.835). The combined model significantly outperformed both the DL (p = 0.017) and the optimal radiomics models (p = 0.039), and the radiologists (both p < 0.050). Moreover, the combined model demonstrated great prognostic predictive value in patients with LSCC, achieving a C-index of 0.624 for PFS. This combined model enhances preoperative LSCC staging, aiding in making more informed clinical decisions.

Dynamic AI Ultrasound-Assisted Diagnosis System to Reduce Unnecessary Fine Needle Aspiration of Thyroid Nodules.

Li F, Tao S, Ji M, Liu L, Qin Z, Yang X, Wu R, Zhan J

pubmed logopapersMay 9 2025
This study aims to compare the diagnostic efficiency of the American College of Radiology-Thyroid Imaging, Reporting, and Data System (ACR-TIRADS), fine-needle aspiration (FNA) cytopathology alone, and the dynamic artificial intelligence (AI) diagnostic system. A total of 1035 patients from three hospitals were included in the study. Of these, 590 were from the retrospective dataset and 445 cases were from the prospective dataset. The diagnostic accuracy of the dynamic AI system in the thyroid nodules was evaluated in comparison to the gold standard of postoperative pathology. The sensitivity, specificity, ROC, and diagnostic differences in the κ-factor relative to the gold standard were analyzed for the AI system and the FNA. The dynamic AI diagnostic system showed good diagnostic stability in different ages and sexes and nodules of different sizes. The diagnostic AUC of the dynamic AI system showed a significant improvement from 0.89 to 0.93 compared to ACR TI-RADS. Compared to that of FNA cytopathology, the diagnostic efficacy of the dynamic AI system was found to be no statistical difference in both the retrospective cohort and the prospective cohort. The dynamic AI diagnostic system enhances the accuracy of ACR TI-RADS-based diagnoses and has the potential to replace biopsies, thus reducing the necessity for invasive procedures in patients.

Deep compressed multichannel adaptive optics scanning light ophthalmoscope.

Park J, Hagan K, DuBose TB, Maldonado RS, McNabb RP, Dubra A, Izatt JA, Farsiu S

pubmed logopapersMay 9 2025
Adaptive optics scanning light ophthalmoscopy (AOSLO) reveals individual retinal cells and their function, microvasculature, and micropathologies in vivo. As compared to the single-channel offset pinhole and two-channel split-detector nonconfocal AOSLO designs, by providing multidirectional imaging capabilities, a recent generation of multidetector and (multi-)offset aperture AOSLO modalities has been demonstrated to provide critical information about retinal microstructures. However, increasing detection channels requires expensive optical components and/or critically increases imaging time. To address this issue, we present an innovative combination of machine learning and optics as an integrated technology to compressively capture 12 nonconfocal channel AOSLO images simultaneously. Imaging of healthy participants and diseased subjects using the proposed deep compressed multichannel AOSLO showed enhanced visualization of rods, cones, and mural cells with over an order-of-magnitude improvement in imaging speed as compared to conventional offset aperture imaging. To facilitate the adaptation and integration with other in vivo microscopy systems, we made optical design, acquisition, and computational reconstruction codes open source.

CirnetamorNet: An ultrasonic temperature measurement network for microwave hyperthermia based on deep learning.

Cui F, Du Y, Qin L, Li B, Li C, Meng X

pubmed logopapersMay 9 2025
Microwave thermotherapy is a promising approach for cancer treatment, but accurate noninvasive temperature monitoring remains challenging. This study aims to achieve accurate temperature prediction during microwave thermotherapy by efficiently integrating multi-feature data, thereby improving the accuracy and reliability of noninvasive thermometry techniques. We proposed an enhanced recurrent neural network architecture, namely CirnetamorNet. The experimental data acquisition system is developed by using the material that simulates the characteristics of human tissue to construct the body model. Ultrasonic image data at different temperatures were collected, and 5 parameters with high temperature correlation were extracted from gray scale covariance matrix and Homodyned-K distribution. Using multi-feature data as input and temperature prediction as output, the CirnetamorNet model is constructed by multi-head attention mechanism. Model performance was evaluated by analyzing training losses, predicting mean square error and accuracy, and ablation experiments were performed to evaluate the contribution of each module. Compared with common models, the CirnetamorNet model performs well, with training losses as low as 1.4589 and mean square error of only 0.1856. Its temperature prediction accuracy of 0.3°C exceeds that of many advanced models. Ablation experiments show that the removal of any key module of the model will lead to performance degradation, which proves that the collaboration of all modules is significant for improving the performance of the model. The proposed CirnetamorNet model exhibits exceptional performance in noninvasive thermometry for microwave thermotherapy. It offers a novel approach to multi-feature data fusion in the medical field and holds significant practical application value.

The Application of Deep Learning for Lymph Node Segmentation: A Systematic Review

Jingguo Qu, Xinyang Han, Man-Lik Chui, Yao Pu, Simon Takadiyi Gunda, Ziman Chen, Jing Qin, Ann Dorothy King, Winnie Chiu-Wing Chu, Jing Cai, Michael Tin-Cheung Ying

arxiv logopreprintMay 9 2025
Automatic lymph node segmentation is the cornerstone for advances in computer vision tasks for early detection and staging of cancer. Traditional segmentation methods are constrained by manual delineation and variability in operator proficiency, limiting their ability to achieve high accuracy. The introduction of deep learning technologies offers new possibilities for improving the accuracy of lymph node image analysis. This study evaluates the application of deep learning in lymph node segmentation and discusses the methodologies of various deep learning architectures such as convolutional neural networks, encoder-decoder networks, and transformers in analyzing medical imaging data across different modalities. Despite the advancements, it still confronts challenges like the shape diversity of lymph nodes, the scarcity of accurately labeled datasets, and the inadequate development of methods that are robust and generalizable across different imaging modalities. To the best of our knowledge, this is the first study that provides a comprehensive overview of the application of deep learning techniques in lymph node segmentation task. Furthermore, this study also explores potential future research directions, including multimodal fusion techniques, transfer learning, and the use of large-scale pre-trained models to overcome current limitations while enhancing cancer diagnosis and treatment planning strategies.

Noise-Consistent Siamese-Diffusion for Medical Image Synthesis and Segmentation

Kunpeng Qiu, Zhiqiang Gao, Zhiying Zhou, Mingjie Sun, Yongxin Guo

arxiv logopreprintMay 9 2025
Deep learning has revolutionized medical image segmentation, yet its full potential remains constrained by the paucity of annotated datasets. While diffusion models have emerged as a promising approach for generating synthetic image-mask pairs to augment these datasets, they paradoxically suffer from the same data scarcity challenges they aim to mitigate. Traditional mask-only models frequently yield low-fidelity images due to their inability to adequately capture morphological intricacies, which can critically compromise the robustness and reliability of segmentation models. To alleviate this limitation, we introduce Siamese-Diffusion, a novel dual-component model comprising Mask-Diffusion and Image-Diffusion. During training, a Noise Consistency Loss is introduced between these components to enhance the morphological fidelity of Mask-Diffusion in the parameter space. During sampling, only Mask-Diffusion is used, ensuring diversity and scalability. Comprehensive experiments demonstrate the superiority of our method. Siamese-Diffusion boosts SANet's mDice and mIoU by 3.6% and 4.4% on the Polyps, while UNet improves by 1.52% and 1.64% on the ISIC2018. Code is available at GitHub.

Towards Better Cephalometric Landmark Detection with Diffusion Data Generation

Dongqian Guo, Wencheng Han, Pang Lyu, Yuxi Zhou, Jianbing Shen

arxiv logopreprintMay 9 2025
Cephalometric landmark detection is essential for orthodontic diagnostics and treatment planning. Nevertheless, the scarcity of samples in data collection and the extensive effort required for manual annotation have significantly impeded the availability of diverse datasets. This limitation has restricted the effectiveness of deep learning-based detection methods, particularly those based on large-scale vision models. To address these challenges, we have developed an innovative data generation method capable of producing diverse cephalometric X-ray images along with corresponding annotations without human intervention. To achieve this, our approach initiates by constructing new cephalometric landmark annotations using anatomical priors. Then, we employ a diffusion-based generator to create realistic X-ray images that correspond closely with these annotations. To achieve precise control in producing samples with different attributes, we introduce a novel prompt cephalometric X-ray image dataset. This dataset includes real cephalometric X-ray images and detailed medical text prompts describing the images. By leveraging these detailed prompts, our method improves the generation process to control different styles and attributes. Facilitated by the large, diverse generated data, we introduce large-scale vision detection models into the cephalometric landmark detection task to improve accuracy. Experimental results demonstrate that training with the generated data substantially enhances the performance. Compared to methods without using the generated data, our approach improves the Success Detection Rate (SDR) by 6.5%, attaining a notable 82.2%. All code and data are available at: https://um-lab.github.io/cepha-generation
Page 53 of 56557 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.