Sort by:
Page 52 of 1331329 results

Multimodal Deep Learning Based on Ultrasound Images and Clinical Data for Better Ovarian Cancer Diagnosis.

Su C, Miao K, Zhang L, Yu X, Guo Z, Li D, Xu M, Zhang Q, Dong X

pubmed logopapersJun 24 2025
This study aimed to develop and validate a multimodal deep learning model that leverages 2D grayscale ultrasound (US) images alongside readily available clinical data to improve diagnostic performance for ovarian cancer (OC). A retrospective analysis was conducted involving 1899 patients who underwent preoperative US examinations and subsequent surgeries for adnexal masses between 2019 and 2024. A multimodal deep learning model was constructed for OC diagnosis and extracting US morphological features from the images. The model's performance was evaluated using metrics such as receiver operating characteristic (ROC) curves, accuracy, and F1 score. The multimodal deep learning model exhibited superior performance compared to the image-only model, achieving areas under the curves (AUCs) of 0.9393 (95% CI 0.9139-0.9648) and 0.9317 (95% CI 0.9062-0.9573) in the internal and external test sets, respectively. The model significantly improved the AUCs for OC diagnosis by radiologists and enhanced inter-reader agreement. Regarding US morphological feature extraction, the model demonstrated robust performance, attaining accuracies of 86.34% and 85.62% in the internal and external test sets, respectively. Multimodal deep learning has the potential to enhance the diagnostic accuracy and consistency of radiologists in identifying OC. The model's effective feature extraction from ultrasound images underscores the capability of multimodal deep learning to automate the generation of structured ultrasound reports.

Assessing Risk of Stealing Proprietary Models for Medical Imaging Tasks

Ankita Raj, Harsh Swaika, Deepankar Varma, Chetan Arora

arxiv logopreprintJun 24 2025
The success of deep learning in medical imaging applications has led several companies to deploy proprietary models in diagnostic workflows, offering monetized services. Even though model weights are hidden to protect the intellectual property of the service provider, these models are exposed to model stealing (MS) attacks, where adversaries can clone the model's functionality by querying it with a proxy dataset and training a thief model on the acquired predictions. While extensively studied on general vision tasks, the susceptibility of medical imaging models to MS attacks remains inadequately explored. This paper investigates the vulnerability of black-box medical imaging models to MS attacks under realistic conditions where the adversary lacks access to the victim model's training data and operates with limited query budgets. We demonstrate that adversaries can effectively execute MS attacks by using publicly available datasets. To further enhance MS capabilities with limited query budgets, we propose a two-step model stealing approach termed QueryWise. This method capitalizes on unlabeled data obtained from a proxy distribution to train the thief model without incurring additional queries. Evaluation on two medical imaging models for Gallbladder Cancer and COVID-19 classification substantiates the effectiveness of the proposed attack. The source code is available at https://github.com/rajankita/QueryWise.

A Multicentre Comparative Analysis of Radiomics, Deep-learning, and Fusion Models for Predicting Postpartum Hemorrhage.

Zhang W, Zhao X, Meng L, Lu L, Guo J, Cheng M, Tian H, Ren N, Yin J, Zhang X

pubmed logopapersJun 24 2025
This study compared the capabilities of two-dimensional (2D) and three-dimensional (3D) deep learning (DL), radiomics, and fusion models to predict postpartum hemorrhage (PPH), using sagittal T2-weighted MRI images. This retrospective study successively included 581 pregnant women suspected of placenta accreta spectrum (PAS) disorders who underwent placental MRI assessment between May 2018 and June 2024 in two hospitals. Clinical information was collected, and MRI images were analyzed by two experienced radiologists. The study cohort was divided into training (hospital 1, n=470) and validation (hospital 2, n=160) sets. Radiomics features were extracted after image segmentation to develop the radiomics model, 2D and 3D DL models were developed, and two fusion strategies (early and late fusion) were used to construct the fusion models. ROC curves, AUC, sensitivity, specificity, calibration curves, and decision curve analysis were used to evaluate the models' performance. The late-fusion model (DLRad_LF) yielded the highest performance, with AUCs of 0.955 (95% CI: 0.935-0.974) and 0.898 (95% CI: 0.848-0.949) in the training and validation sets, respectively. In the validation set, the AUC of the 3D DL model was significantly larger than those of the radiomics (AUC=0.676, P<0.001) and 2D DL (AUC=0.752, P<0.001) models. Subgroup analysis found that placenta previa and PAS did not impact the models' performance significantly. The DLRad_LF model could predict PPH reasonably accurately based on sagittal T2-weighted MRI images.

Differentiating adenocarcinoma and squamous cell carcinoma in lung cancer using semi automated segmentation and radiomics.

Vijitha R, Wickramasinghe WMIS, Perera PAS, Jayatissa RMGCSB, Hettiarachchi RT, Alwis HARV

pubmed logopapersJun 24 2025
Adenocarcinoma (AD) and squamous cell carcinoma (SCC) are frequently observed forms of non-small cell lung cancer (NSCLC), playing a significant role in global cancer mortality. This research categorizes NSCLC subtypes by analyzing image details using computer-assisted semi-automatic segmentation and radiomic features in model development. This study includes 80 patients with 50 AD and 30 SCC which were analyzed using 3D Slicer software and extracted 107 quantitative radiomic features per patient. After eliminating correlated attributes, LASSO binary logistic regression model and 10-fold cross-validation were used for feature selection. The Shapiro-Wilk test assessed radiomic score normality, and the Mann-Whitney U test compared score distributions. Random Forest (RF) and Support Vector Machine (SVM) classification models were implemented for subtype classification. Receiver-Operator Characteristic (ROC) curves evaluated the radiomics score, showing a moderate predictive ability with training set area under curve (AUC) of 0.679 (95 % CI, 0.541-0.871) and validation set AUC of 0.560 (95 % CI, 0.342-0.778). Rad-Score distributions were normal for AD and not normal for SCC. RF and SVM classification models, which are based on selected features, resulted RF accuracy (95 % CI) of 0.73 and SVM accuracy (95 % CI) of 0.87, with respective AUC values of 0.54 and 0.87. These findings enhance the understanding that the two subtypes of NSCLC can be differentiated. The study demonstrated radiomic analysis improves diagnostic accuracy and offers a non-invasive alternative. However, the AUCs and ROC curves for the machine learning models must be critically evaluated to ensure clinical acceptability. If robust, these models could reduce the need for biopsies and enhance personalized treatment planning. Further research is needed to validate these findings and integrate radiomics into NSCLC clinical practice.

Semantic Scene Graph for Ultrasound Image Explanation and Scanning Guidance

Xuesong Li, Dianye Huang, Yameng Zhang, Nassir Navab, Zhongliang Jiang

arxiv logopreprintJun 24 2025
Understanding medical ultrasound imaging remains a long-standing challenge due to significant visual variability caused by differences in imaging and acquisition parameters. Recent advancements in large language models (LLMs) have been used to automatically generate terminology-rich summaries orientated to clinicians with sufficient physiological knowledge. Nevertheless, the increasing demand for improved ultrasound interpretability and basic scanning guidance among non-expert users, e.g., in point-of-care settings, has not yet been explored. In this study, we first introduce the scene graph (SG) for ultrasound images to explain image content to ordinary and provide guidance for ultrasound scanning. The ultrasound SG is first computed using a transformer-based one-stage method, eliminating the need for explicit object detection. To generate a graspable image explanation for ordinary, the user query is then used to further refine the abstract SG representation through LLMs. Additionally, the predicted SG is explored for its potential in guiding ultrasound scanning toward missing anatomies within the current imaging view, assisting ordinary users in achieving more standardized and complete anatomical exploration. The effectiveness of this SG-based image explanation and scanning guidance has been validated on images from the left and right neck regions, including the carotid and thyroid, across five volunteers. The results demonstrate the potential of the method to maximally democratize ultrasound by enhancing its interpretability and usability for ordinaries.

Enhancing Lung Cancer Diagnosis: An Optimization-Driven Deep Learning Approach with CT Imaging.

Lakshminarasimha K, Priyeshkumar AT, Karthikeyan M, Sakthivel R

pubmed logopapersJun 23 2025
Lung cancer (LC) remains a leading cause of mortality worldwide, affecting individuals across all genders and age groups. Early and accurate diagnosis is critical for effective treatment and improved survival rates. Computed Tomography (CT) imaging is widely used for LC detection and classification. However, manual identification can be time-consuming and error-prone due to the visual similarities among various LC types. Deep learning (DL) has shown significant promise in medical image analysis. Although numerous studies have investigated LC detection using deep learning techniques, the effective extraction of highly correlated features remains a significant challenge, thereby limiting diagnostic accuracy. Furthermore, most existing models encounter substantial computational complexity and find it difficult to efficiently handle the high-dimensional nature of CT images. This study introduces an optimized CBAM-EfficientNet model to enhance feature extraction and improve LC classification. EfficientNet is utilized to reduce computational complexity, while the Convolutional Block Attention Module (CBAM) emphasizes essential spatial and channel features. Additionally, optimization algorithms including Gray Wolf Optimization (GWO), Whale Optimization (WO), and the Bat Algorithm (BA) are applied to fine-tune hyperparameters and boost predictive accuracy. The proposed model, integrated with different optimization strategies, is evaluated on two benchmark datasets. The GWO-based CBAM-EfficientNet achieves outstanding classification accuracies of 99.81% and 99.25% on the Lung-PET-CT-Dx and LIDC-IDRI datasets, respectively. Following GWO, the BA-based CBAM-EfficientNet achieves 99.44% and 98.75% accuracy on the same datasets. Comparative analysis highlights the superiority of the proposed model over existing approaches, demonstrating strong potential for reliable and automated LC diagnosis. Its lightweight architecture also supports real-time implementation, offering valuable assistance to radiologists in high-demand clinical environments.

Benchmarking Foundation Models and Parameter-Efficient Fine-Tuning for Prognosis Prediction in Medical Imaging

Filippo Ruffini, Elena Mulero Ayllon, Linlin Shen, Paolo Soda, Valerio Guarrasi

arxiv logopreprintJun 23 2025
Artificial Intelligence (AI) holds significant promise for improving prognosis prediction in medical imaging, yet its effective application remains challenging. In this work, we introduce a structured benchmark explicitly designed to evaluate and compare the transferability of Convolutional Neural Networks and Foundation Models in predicting clinical outcomes in COVID-19 patients, leveraging diverse publicly available Chest X-ray datasets. Our experimental methodology extensively explores a wide set of fine-tuning strategies, encompassing traditional approaches such as Full Fine-Tuning and Linear Probing, as well as advanced Parameter-Efficient Fine-Tuning methods including Low-Rank Adaptation, BitFit, VeRA, and IA3. The evaluations were conducted across multiple learning paradigms, including both extensive full-data scenarios and more clinically realistic Few-Shot Learning settings, which are critical for modeling rare disease outcomes and rapidly emerging health threats. By implementing a large-scale comparative analysis involving a diverse selection of pretrained models, including general-purpose architectures pretrained on large-scale datasets such as CLIP and DINOv2, to biomedical-specific models like MedCLIP, BioMedCLIP, and PubMedCLIP, we rigorously assess each model's capacity to effectively adapt and generalize to prognosis tasks, particularly under conditions of severe data scarcity and pronounced class imbalance. The benchmark was designed to capture critical conditions common in prognosis tasks, including variations in dataset size and class distribution, providing detailed insights into the strengths and limitations of each fine-tuning strategy. This extensive and structured evaluation aims to inform the practical deployment and adoption of robust, efficient, and generalizable AI-driven solutions in real-world clinical prognosis prediction workflows.

BrainSymphony: A Transformer-Driven Fusion of fMRI Time Series and Structural Connectivity

Moein Khajehnejad, Forough Habibollahi, Adeel Razi

arxiv logopreprintJun 23 2025
Existing foundation models for neuroimaging are often prohibitively large and data-intensive. We introduce BrainSymphony, a lightweight, parameter-efficient foundation model that achieves state-of-the-art performance while being pre-trained on significantly smaller public datasets. BrainSymphony's strong multimodal architecture processes functional MRI data through parallel spatial and temporal transformer streams, which are then efficiently distilled into a unified representation by a Perceiver module. Concurrently, it models structural connectivity from diffusion MRI using a novel signed graph transformer to encode the brain's anatomical structure. These powerful, modality-specific representations are then integrated via an adaptive fusion gate. Despite its compact design, our model consistently outperforms larger models on a diverse range of downstream benchmarks, including classification, prediction, and unsupervised network identification tasks. Furthermore, our model revealed novel insights into brain dynamics using attention maps on a unique external psilocybin neuroimaging dataset (pre- and post-administration). BrainSymphony establishes that architecturally-aware, multimodal models can surpass their larger counterparts, paving the way for more accessible and powerful research in computational neuroscience.

Open Set Recognition for Endoscopic Image Classification: A Deep Learning Approach on the Kvasir Dataset

Kasra Moazzami, Seoyoun Son, John Lin, Sun Min Lee, Daniel Son, Hayeon Lee, Jeongho Lee, Seongji Lee

arxiv logopreprintJun 23 2025
Endoscopic image classification plays a pivotal role in medical diagnostics by identifying anatomical landmarks and pathological findings. However, conventional closed-set classification frameworks are inherently limited in open-world clinical settings, where previously unseen conditions can arise andcompromise model reliability. To address this, we explore the application of Open Set Recognition (OSR) techniques on the Kvasir dataset, a publicly available and diverse endoscopic image collection. In this study, we evaluate and compare the OSR capabilities of several representative deep learning architectures, including ResNet-50, Swin Transformer, and a hybrid ResNet-Transformer model, under both closed-set and open-set conditions. OpenMax is adopted as a baseline OSR method to assess the ability of these models to distinguish known classes from previously unseen categories. This work represents one of the first efforts to apply open set recognition to the Kvasir dataset and provides a foundational benchmark for evaluating OSR performance in medical image analysis. Our results offer practical insights into model behavior in clinically realistic settings and highlight the importance of OSR techniques for the safe deployment of AI systems in endoscopy.

[Incidental pulmonary nodules on CT imaging: what to do?].

van der Heijden EHFM, Snoeren M, Jacobs C

pubmed logopapersJun 23 2025
Incidental pulmonary nodules are very frequently found on CT imaging and may represent (early stage) lung cancers without any signs or symptoms. These incidental findings can be solid lesions or ground glass lesions that may be solitary or multiple. Careful, and systematic evaluation of these findings in imaging is needed to determine the risk of malignancy, based on imaging characteristics, patient factors like smoking habits, prior cancers or family history, and growth rate preferably determined by volume measurements. Once the risk of malignancy is increased, minimal invasive image guided biopsy is warranted, preferably by navigation bronchoscopy. We present two cases to illustrate this clinical workup: one case with a benign solitary pulmonary nodule, and a second case with multiple ground glass opacities, diagnosed as synchronous primary adenocarcinomas of the lung. This is followed by a review of the current status of computer and artificial intelligence aided diagnostic support and clinical workflow optimization.
Page 52 of 1331329 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.