Sort by:
Page 50 of 64636 results

Discriminating Clear Cell From Non-Clear Cell Renal Cell Carcinoma: A Machine Learning Approach Using Contrast-enhanced Ultrasound Radiomics.

Liang M, Wu S, Ou B, Wu J, Qiu H, Zhao X, Luo B

pubmed logopapersMay 31 2025
The aim of this investigation is to assess the clinical usefulness of a machine learning model using contrast-enhanced ultrasound (CEUS) radiomics in discriminating clear cell renal cell carcinoma (ccRCC) from non-ccRCC. A total of 292 patients with pathologically confirmed RCC subtypes underwent CEUS (development set. n = 231; validation set, n = 61) in a retrospective study. Radiomics features were derived from CEUS images acquired during the cortical and parenchymal phases. Radiomics models were developed using logistic regression (LR), support vector machine, decision tree, naive Bayes, gradient boosting machine, and random forest. The suitable model was identified based on the area under the receiver operating characteristic curve (AUC). Appropriate clinical CEUS features were identified through univariate and multivariate LR analyses to develop a clinical model. By integrating radiomics and clinical CEUS features, a combined model was established. A comprehensive evaluation of the models' performance was conducted. After the reduction and selection process were applied to 2250 radiomics features, the final set of 8 features was considered valuable. Among the models, the LR model had the highest performance on the validation set and showed good robustness. In both the development and validation sets, both the radiomics (AUC, 0.946 and 0.927) and the combined models (AUC, 0.949 and 0.925) outperformed the clinical model (AUC, 0.851 and 0.768), showing higher AUC values (all p < 0.05). The combined model exhibited favorable calibration and clinical benefit. The combined model integrating clinical CEUS and CEUS radiomics features demonstrated good diagnostic performance in discriminating ccRCC from non-ccRCC.

Study of AI algorithms on mpMRI and PHI for the diagnosis of clinically significant prostate cancer.

Luo Z, Li J, Wang K, Li S, Qian Y, Xie W, Wu P, Wang X, Han J, Zhu W, Wang H, He Y

pubmed logopapersMay 31 2025
To study the feasibility of multiple factors in improving the diagnostic accuracy of clinically significant prostate cancer (csPCa). A retrospective study with 131 patients analyzes age, PSA, PHI and pathology. Patients with ISUP > 2 were classified as csPCa, and others are non-csPCa. The mpMRI images were processed by a homemade AI algorithm, obtaining positive or negative AI results. Four logistic regression models were fitted, with pathological findings as the dependent variable. The predicted probability of the patients was used to test the prediction efficacy of the models. The DeLong test was performed to compare differences in the area under the receiver operating characteristic (ROC) curves (AUCs) between the models. The study includes 131 patients: 62 were diagnosed with csPCa and 69 were non-csPCa. Statically significant differences were found in age, PSA, PIRADS score, AI results, and PHI values between the 2 groups (all P ≤ 0.001). The conventional model (R<sup>2</sup> = 0.389), the AI model (R<sup>2</sup> = 0.566), and the PHI model (R<sup>2</sup> = 0.515) were compared to the full model (R<sup>2</sup> = 0.626) with ANOVA and showed statistically significant differences (all P < 0.05). The AUC of the full model (0.921 [95% CI: 0.871-0.972]) was significantly higher than that of the conventional model (P = 0.001), AI model (P < 0.001), and PHI model (P = 0.014). Combining multiple factors such as age, PSA, PIRADS score and PHI, adding AI algorithm based on mpMRI, the diagnostic accuracy of csPCa can be improved.

From Guidelines to Intelligence: How AI Refines Thyroid Nodule Biopsy Decisions.

Zeng W, He Y, Xu R, Mai W, Chen Y, Li S, Yi W, Ma L, Xiong R, Liu H

pubmed logopapersMay 31 2025
To evaluate the value of combining American College of Radiology (ACR) Thyroid Imaging Reporting and Data System (TI-RADS) with the Demetics ultrasound diagnostic system in reducing the rate of fine-needle aspiration (FNA) biopsies for thyroid nodules. A retrospective study analyzed 548 thyroid nodules from 454 patients, all meeting ACR TI-RADS guidelines (category ≥3 and diameter ≥10 mm) for FNA. Nodule was reclassified using the combined ACR TI-RADS and Demetics system (De TI-RADS), and the biopsy rates were compared. Using ACR TI-RADS alone, the biopsy rate was 70.6% (387/548), with a positive predictive value (PPV) of 52.5% (203/387), an unnecessary biopsy rate of 47.5% (184/387) and a missed diagnosis rate of 11.0% (25/228). Incorporating Demetics reduced the biopsy rate to 48.1% (264/548), the unnecessary biopsy rate to 17.4% (46/265) and the missed diagnosis rate to 4.4% (10/228), while increasing PPV to 82.6% (218/264). All differences between ACR TI-RADS and De TI-RADS were statistically significant (p < 0.05). The integration of ACR TI-RADS with the Demetics system improves nodule risk assessment by enhancing diagnostic and efficiency. This approach reduces unnecessary biopsies and missed diagnoses while increasing PPV, offering a more reliable tool for clinicians and patients.

Accelerated proton resonance frequency-based magnetic resonance thermometry by optimized deep learning method.

Xu S, Zong S, Mei CS, Shen G, Zhao Y, Wang H

pubmed logopapersMay 31 2025
Proton resonance frequency (PRF)-based magnetic resonance (MR) thermometry plays a critical role in thermal ablation therapies through focused ultrasound (FUS). For clinical applications, accurate and rapid temperature feedback is essential to ensure both the safety and effectiveness of these treatments. This work aims to improve temporal resolution in dynamic MR temperature map reconstructions using an enhanced deep-learning method, thereby supporting the real-time monitoring required for effective FUS treatments. Five classical neural network architectures-cascade net, complex-valued U-Net, shift window transformer for MRI, real-valued U-Net, and U-Net with residual blocks-along with training-optimized methods were applied to reconstruct temperature maps from 2-fold and 4-fold undersampled k-space data. The training enhancements included pre-training/training-phase data augmentations, knowledge distillation, and a novel amplitude-phase decoupling loss function. Phantom and ex vivo tissue heating experiments were conducted using a FUS transducer. Ground truth was the complex MR images with accurate temperature changes, and datasets were manually undersampled to simulate such acceleration here. Separate testing datasets were used to evaluate real-time performance and temperature accuracy. Furthermore, our proposed deep learning-based rapid reconstruction approach was validated on a clinical dataset obtained from patients with uterine fibroids, demonstrating its clinical applicability. Acceleration factors of 1.9 and 3.7 were achieved for 2× and 4× k-space under samplings, respectively. The deep learning-based reconstruction using ResUNet incorporating the four optimizations, showed superior performance. For 2-fold acceleration, the RMSE of temperature map patches were 0.89°C and 1.15°C for the phantom and ex vivo testing datasets, respectively. The DICE coefficient for the 43°C isotherm-enclosed regions was 0.81, and the Bland-Altman analysis indicated a bias of -0.25°C with limits of agreement of ±2.16°C. In the 4-fold under-sampling case, these evaluation metrics showed approximately a 10% reduction in accuracy. Additionally, the DICE coefficient measuring the overlap between the reconstructed temperature maps (using the optimized ResUNet) and the ground truth, specifically in regions where the temperature exceeded the 43°C threshold, were 0.77 and 0.74 for the 2× and 4× under-sampling scenarios, respectively. This study demonstrates that deep learning-based reconstruction significantly enhances the accuracy and efficiency of MR thermometry, particularly in the context of FUS-based clinical treatments for uterine fibroids. This approach could also be extended to other applications such as essential tremor and prostate cancer treatments where MRI-guided FUS plays a critical role.

ACM-UNet: Adaptive Integration of CNNs and Mamba for Efficient Medical Image Segmentation

Jing Huang, Yongkang Zhao, Yuhan Li, Zhitao Dai, Cheng Chen, Qiying Lai

arxiv logopreprintMay 30 2025
The U-shaped encoder-decoder architecture with skip connections has become a prevailing paradigm in medical image segmentation due to its simplicity and effectiveness. While many recent works aim to improve this framework by designing more powerful encoders and decoders, employing advanced convolutional neural networks (CNNs) for local feature extraction, Transformers or state space models (SSMs) such as Mamba for global context modeling, or hybrid combinations of both, these methods often struggle to fully utilize pretrained vision backbones (e.g., ResNet, ViT, VMamba) due to structural mismatches. To bridge this gap, we introduce ACM-UNet, a general-purpose segmentation framework that retains a simple UNet-like design while effectively incorporating pretrained CNNs and Mamba models through a lightweight adapter mechanism. This adapter resolves architectural incompatibilities and enables the model to harness the complementary strengths of CNNs and SSMs-namely, fine-grained local detail extraction and long-range dependency modeling. Additionally, we propose a hierarchical multi-scale wavelet transform module in the decoder to enhance feature fusion and reconstruction fidelity. Extensive experiments on the Synapse and ACDC benchmarks demonstrate that ACM-UNet achieves state-of-the-art performance while remaining computationally efficient. Notably, it reaches 85.12% Dice Score and 13.89mm HD95 on the Synapse dataset with 17.93G FLOPs, showcasing its effectiveness and scalability. Code is available at: https://github.com/zyklcode/ACM-UNet.

Combining structural equation modeling analysis with machine learning for early malignancy detection in Bethesda Category III thyroid nodules.

Kasap ZA, Kurt B, Güner A, Özsağır E, Ercin ME

pubmed logopapersMay 30 2025
Atypia of Undetermined Significance (AUS), classified as Category III in the Bethesda Thyroid Cytopathology Reporting System, presents significant diagnostic challenges for clinicians. This study aims to develop a clinical decision support system that integrates structural equation modeling (SEM) and machine learning to predict malignancy in AUS thyroid nodules. The model integrates preoperative clinical data, ultrasonography (USG) findings, and cytopathological and morphometric variables. This retrospective cohort study was conducted between 2011 and 2019 at Karadeniz Technical University (KTU) Farabi Hospital. The dataset included 56 variables derived from 204 thyroid nodules diagnosed via ultrasound-guided fine-needle aspiration biopsy (FNAB) in 183 patients over 18 years. Logistic regression (LR) and SEM were used to identify risk factors for early thyroid cancer detection. Subsequently, machine learning algorithms-including Support Vector Machines (SVM), Naive Bayes (NB), and Decision Trees (DT) were used to construct decision support models. After feature selection with SEM, the SVM model achieved the highest performance, with an accuracy of 82 %, a specificity of 97 %, and an AUC value of 84 %. Additional models were developed for different scenarios, and their performance metrics were compared. Accurate preoperative prediction of malignancy in thyroid nodules is crucial for avoiding unnecessary surgeries. The proposed model supports more informed clinical decision-making by effectively identifying benign cases, thereby reducing surgical risk and improving patient care.

Evaluation of uncertainty estimation methods in medical image segmentation: Exploring the usage of uncertainty in clinical deployment.

Li S, Yuan M, Dai X, Zhang C

pubmed logopapersMay 30 2025
Uncertainty estimation methods are essential for the application of artificial intelligence (AI) models in medical image segmentation, particularly in addressing reliability and feasibility challenges in clinical deployment. Despite their significance, the adoption of uncertainty estimation methods in clinical practice remains limited due to the lack of a comprehensive evaluation framework tailored to their clinical usage. To address this gap, a simulation of uncertainty-assisted clinical workflows is conducted, highlighting the roles of uncertainty in model selection, sample screening, and risk visualization. Furthermore, uncertainty evaluation is extended to pixel, sample, and model levels to enable a more thorough assessment. At the pixel level, the Uncertainty Confusion Metric (UCM) is proposed, utilizing density curves to improve robustness against variability in uncertainty distributions and to assess the ability of pixel uncertainty to identify potential errors. At the sample level, the Expected Segmentation Calibration Error (ESCE) is introduced to provide more accurate calibration aligned with Dice, enabling more effective identification of low-quality samples. At the model level, the Harmonic Dice (HDice) metric is developed to integrate uncertainty and accuracy, mitigating the influence of dataset biases and offering a more robust evaluation of model performance on unseen data. Using this systematic evaluation framework, five mainstream uncertainty estimation methods are compared on organ and tumor datasets, providing new insights into their clinical applicability. Extensive experimental analyses validated the practicality and effectiveness of the proposed metrics. This study offers clear guidance for selecting appropriate uncertainty estimation methods in clinical settings, facilitating their integration into clinical workflows and ultimately improving diagnostic efficiency and patient outcomes.

Multiclass ensemble framework for enhanced prostate gland Segmentation: Integrating Self-ONN decoders with EfficientNet.

Islam Sumon MS, Chowdhury MEH, Bhuiyan EH, Rahman MS, Khan MM, Al-Hashimi I, Mushtak A, Zoghoul SB

pubmed logopapersMay 30 2025
Digital pathology relies on the morphological architecture of prostate glands to recognize cancerous tissue. Prostate cancer (PCa) originates in walnut shaped prostate gland in the male reproductive system. Deep learning (DL) pipelines can assist in identifying these regions with advanced segmentation techniques which are effective in diagnosing and treating prostate diseases. This facilitates early detection, targeted biopsy, and accurate treatment planning, ensuring consistent, reproducible results while minimizing human error. Automated segmentation techniques trained on MRI datasets can aid in monitoring disease progression which leads to clinical support by developing patient-specific models for personalized medicine. In this study, we present multiclass segmentation models designed to localize the prostate gland and its zonal regions-specifically the peripheral zone (PZ), transition zone (TZ), and the whole gland-by combining EfficientNetB4 encoders with Self-organized Operational Neural Network (Self-ONN)-based decoders. Traditional convolutional neural networks (CNNs) rely on linear neuron models, which limit their ability to capture the complex dynamics of biological neural systems. In contrast, Operational Neural Networks (ONNs), particularly Self-ONNs, address this limitation by incorporating nonlinear and adaptive operations at the neuron level. We evaluated various encoder-decoder configurations and identified that the combination of an EfficientNet-based encoder with a Self-ONN-based decoder yielded the best performance. To further enhance segmentation accuracy, we employed the STAPLE method to ensemble the top three performing models. Our approach was tested on the large-scale, recently updated PI-CAI Challenge dataset using 5-fold cross-validation, achieving Dice scores of 95.33 % for the whole gland and 92.32 % for the combined PZ and TZ regions. These advanced segmentation techniques significantly improve the quality of PCa diagnosis and treatment, contributing to better patient care and outcomes.

Comparative analysis of natural language processing methodologies for classifying computed tomography enterography reports in Crohn's disease patients.

Dai J, Kim MY, Sutton RT, Mitchell JR, Goebel R, Baumgart DC

pubmed logopapersMay 30 2025
Imaging is crucial to assess disease extent, activity, and outcomes in inflammatory bowel disease (IBD). Artificial intelligence (AI) image interpretation requires automated exploitation of studies at scale as an initial step. Here we evaluate natural language processing to classify Crohn's disease (CD) on CTE. From our population representative IBD registry a sample of CD patients (male: 44.6%, median age: 50 IQR37-60) and controls (n = 981 each) CTE reports were extracted and split into training- (n = 1568), development- (n = 196), and testing (n = 198) datasets each with around 200 words and balanced numbers of labels, respectively. Predictive classification was evaluated with CNN, Bi-LSTM, BERT-110M, LLaMA-3.3-70B-Instruct and DeepSeek-R1-Distill-LLaMA-70B. While our custom IBDBERT finetuned on expert IBD knowledge (i.e. ACG, AGA, ECCO guidelines), outperformed rule- and rationale extraction-based classifiers (accuracy 88.6% with pre-tuning learning rate 0.00001, AUC 0.945) in predictive performance, LLaMA, but not DeepSeek achieved overall superior results (accuracy 91.2% vs. 88.9%, F1 0.907 vs. 0.874).

The value of artificial intelligence in PSMA PET: a pathway to improved efficiency and results.

Dadgar H, Hong X, Karimzadeh R, Ibragimov B, Majidpour J, Arabi H, Al-Ibraheem A, Khalaf AN, Anwar FM, Marafi F, Haidar M, Jafari E, Zarei A, Assadi M

pubmed logopapersMay 30 2025
This systematic review investigates the potential of artificial intelligence (AI) in improving the accuracy and efficiency of prostate-specific membrane antigen positron emission tomography (PSMA PET) scans for detecting metastatic prostate cancer. A comprehensive literature search was conducted across Medline, Embase, and Web of Science, adhering to PRISMA guidelines. Key search terms included "artificial intelligence," "machine learning," "deep learning," "prostate cancer," and "PSMA PET." The PICO framework guided the selection of studies focusing on AI's application in evaluating PSMA PET scans for staging lymph node and distant metastasis in prostate cancer patients. Inclusion criteria prioritized original English-language articles published up to October 2024, excluding studies using non-PSMA radiotracers, those analyzing only the CT component of PSMA PET-CT, studies focusing solely on intra-prostatic lesions, and non-original research articles. The review included 22 studies, with a mix of prospective and retrospective designs. AI algorithms employed included machine learning (ML), deep learning (DL), and convolutional neural networks (CNNs). The studies explored various applications of AI, including improving diagnostic accuracy, sensitivity, differentiation from benign lesions, standardization of reporting, and predicting treatment response. Results showed high sensitivity (62% to 97%) and accuracy (AUC up to 98%) in detecting metastatic disease, but also significant variability in positive predictive value (39.2% to 66.8%). AI demonstrates significant promise in enhancing PSMA PET scan analysis for metastatic prostate cancer, offering improved efficiency and potentially better diagnostic accuracy. However, the variability in performance and the "black box" nature of some algorithms highlight the need for larger prospective studies, improved model interpretability, and the continued involvement of experienced nuclear medicine physicians in interpreting AI-assisted results. AI should be considered a valuable adjunct, not a replacement, for expert clinical judgment.
Page 50 of 64636 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.