Back to all papers

Multilayer perceptron deep learning radiomics model based on Gd-BOPTA MRI to identify vessels encapsulating tumor clusters in hepatocellular carcinoma: a multi-center study.

Authors

Gu M,Zou W,Chen H,He R,Zhao X,Jia N,Liu W,Wang P

Affiliations (5)

  • Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
  • School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
  • Department of Radiology, Eastern Hepatobiliary Surgery Hospital, The Third Affiliated Hospital of Naval Medical University, Shanghai, China.
  • Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  • Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China. [email protected].

Abstract

The purpose of this study is to mainly develop a predictive model based on clinicoradiological and radiomics features from preoperative gadobenate-enhanced (Gd-BOPTA) magnetic resonance imaging (MRI) using multilayer perceptron (MLP) deep learning to predict vessels encapsulating tumor clusters (VETC) in hepatocellular carcinoma (HCC) patients. A total of 230 patients with histopathologically confirmed HCC who underwent preoperative Gd-BOPTA MRI before hepatectomy were retrospectively enrolled from three hospitals (144, 54, and 32 in training, test, and validation set, respectively). Univariate and multivariate logistic regression analyses were used to determine independent clinicoradiological predictors significantly associated with VETC, which then constituted the clinicoradiological model. Regions of interest (ROIs) included four modes, intratumoral (Tumor), peritumoral area ≤ 2 mm (Peri2mm), intratumoral + peritumoral area ≤ 2 mm (Tumor + Peri2mm) and intratumoral integrated with peritumoral ≤ 2 mm as a whole (TumorPeri2mm). A total of 7322 radiomics features were extracted respectively for ROI(Tumor), ROI(Peri2mm), ROI(TumorPeri2mm) and 14644 radiomics features for ROI(Tumor + Peri2mm). Least absolute shrinkage and selection operator (LASSO) and univariate logistic regression analysis were used to select the important features. Seven different machine learning classifiers respectively combined the radiomics signatures selected from four ROIs to constitute different models, and compare the performance between them in three sets and then select the optimal combination to become the radiomics model we need. Then a radiomics score (rad-score) was generated, which combined significant clinicoradiological predictors to constituted the fusion model through multivariate logistic regression analysis. After comparing the performance of the three models using area under receiver operating characteristic curve (AUC), integrated discrimination index (IDI) and net reclassification index (NRI), choose the optimal predictive model for VETC prediction. Arterial peritumoral enhancement and peritumoral hypointensity on hepatobiliary phase (HBP) were independent risk factors for VETC, and constituted the Radiology model, without any clinical variables. Arterial peritumoral enhancement defined as the enhancement outside the tumor boundary in the late stage of arterial phase or early stage of portal phase, extensive contact with the tumor edge, which becomes isointense during the DP. MLP deep learning algorithm integrated radiomics features selected from ROI TumorPeri2mm was the best combination, which constituted the radiomics model (MLP model). A MLP score (MLP_score) was calculated then, which combining the two radiology features composed the fusion model (Radiology MLP model), with AUCs of 0.871, 0.894, 0.918 in the training, test and validation sets. Compared with the two models aforementioned, the Radiology MLP model demonstrated a 33.4%-131.3% improvement in NRI and a 9.3%-50% improvement in IDI, showing better discrimination, calibration and clinical usefulness in three sets, which was selected as the optimal predictive model. We mainly developed a fusion model (Radiology MLP model) that integrated radiology and radiomics features using MLP deep learning algorithm to predict vessels encapsulating tumor clusters (VETC) in hepatocellular carcinoma (HCC) patients, which yield an incremental value over the radiology and the MLP model.

Topics

Liver NeoplasmsCarcinoma, HepatocellularDeep LearningMagnetic Resonance ImagingOrganometallic CompoundsMeglumineJournal ArticleMulticenter Study

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.