Sort by:
Page 48 of 65642 results

Multi-level feature fusion network for kidney disease detection.

Rehman Khan SU

pubmed logopapersJun 1 2025
Kidney irregularities pose a significant public health challenge, often leading to severe complications, yet the limited availability of nephrologists makes early detection costly and time-consuming. To address this issue, we propose a deep learning framework for automated kidney disease detection, leveraging feature fusion and sequential modeling techniques to enhance diagnostic accuracy. Our study thoroughly evaluates six pretrained models under identical experimental conditions, identifying ResNet50 and VGG19 as the highly efficient models for feature extraction due to their deep residual learning and hierarchical representations. Our proposed methodology integrates feature fusion with an inception block to extract diverse feature representations while maintaining imbalance dataset overhead. To enhance sequential learning and capture long-term dependencies in disease progression, ConvLSTM is incorporated after feature fusion. Additionally, Inception block is employed after ConvLSTM to refine hierarchical feature extraction, further strengthening the proposed model ability to leverage both spatial and temporal patterns. To validate our approach, we introduce a new named Multiple Hospital Collected (MHC-CT) dataset, consisting of 1860 tumor and 1024 normal kidney CT scans, meticulously annotated by medical experts. Our model achieves 99.60 % accuracy on this dataset, demonstrating its robustness in binary classification. Furthermore, to assess its generalization capability, we evaluate the model on a publicly available benchmark multiclass CT scan dataset, achieving 91.31 % accuracy. The superior performance is attributed to the effective feature fusion using inception blocks and the sequential learning capabilities of ConvLSTM, which together enhance spatial and temporal feature representations. These results highlight the efficacy of the proposed framework in automating kidney disease detection, providing a reliable, and efficient solution for clinical decision-making. https://github.com/VS-EYE/KidneyDiseaseDetection.git.

Liver Tumor Prediction using Attention-Guided Convolutional Neural Networks and Genomic Feature Analysis.

Edwin Raja S, Sutha J, Elamparithi P, Jaya Deepthi K, Lalitha SD

pubmed logopapersJun 1 2025
The task of predicting liver tumors is critical as part of medical image analysis and genomics area since diagnosis and prognosis are important in making correct medical decisions. Silent characteristics of liver tumors and interactions between genomic and imaging features are also the main sources of challenges toward reliable predictions. To overcome these hurdles, this study presents two integrated approaches namely, - Attention-Guided Convolutional Neural Networks (AG-CNNs), and Genomic Feature Analysis Module (GFAM). Spatial and channel attention mechanisms in AG-CNN enable accurate tumor segmentation from CT images while providing detailed morphological profiling. Evaluation with three control databases TCIA, LiTS, and CRLM shows that our model produces more accurate output than relevant literature with an accuracy of 94.5%, a Dice Similarity Coefficient of 91.9%, and an F1-Score of 96.2% for the Dataset 3. More considerably, the proposed methods outperform all the other methods in different datasets in terms of recall, precision, and Specificity by up to 10 percent than all other methods including CELM, CAGS, DM-ML, and so on.•Utilization of Attention-Guided Convolutional Neural Networks (AG-CNN) enhances tumor region focus and segmentation accuracy.•Integration of Genomic Feature Analysis (GFAM) identifies molecular markers for subtype-specific tumor classification.

Evaluation of MRI anatomy in machine learning predictive models to assess hydrogel spacer benefit for prostate cancer patients.

Bush M, Jones S, Hargrave C

pubmed logopapersJun 1 2025
Hydrogel spacers (HS) are designed to minimise the radiation doses to the rectum in prostate cancer radiation therapy (RT) by creating a physical gap between the rectum and the target treatment volume inclusive of the prostate and seminal vesicles (SV). This study aims to determine the feasibility of incorporating diagnostic MRI (dMRI) information in statistical machine learning (SML) models developed with planning CT (pCT) anatomy for dose and rectal toxicity prediction. The SML models aim to support HS insertion decision-making prior to RT planning procedures. Regions of interest (ROIs) were retrospectively contoured on the pCT and registered dMRI scans for 20 patients. ROI Dice and Hausdorff distance (HD) comparison metrics were calculated. The ROI and patient clinical risk factors (CRFs) variables were inputted into three SML models and then pCT and dMRI-based dose and toxicity model performance compared through confusion matrices, AUC curves, accuracy performance metric results and observed patient outcomes. Average Dice values comparing dMRI and pCT ROIs were 0.81, 0.47 and 0.71 for the prostate, SV, and rectum respectively. Average Hausdorff distances were 2.15, 2.75 and 2.75 mm for the prostate, SV, and rectum respectively. The average accuracy metric across all models was 0.83 when using dMRI ROIs and 0.85 when using pCT ROIs. Differences between pCT and dMRI anatomical ROI variables did not impact SML model performance in this study, demonstrating the feasibility of using dMRI images. Due to the limited sample size further training of the predictive models including dMRI anatomy is recommended.

Combining Deep Data-Driven and Physics-Inspired Learning for Shear Wave Speed Estimation in Ultrasound Elastography.

Tehrani AKZ, Schoen S, Candel I, Gu Y, Guo P, Thomenius K, Pierce TT, Wang M, Tadross R, Washburn M, Rivaz H, Samir AE

pubmed logopapersJun 1 2025
The shear wave elastography (SWE) provides quantitative markers for tissue characterization by measuring the shear wave speed (SWS), which reflects tissue stiffness. SWE uses an acoustic radiation force pulse sequence to generate shear waves that propagate laterally through tissue with transient displacements. These waves travel perpendicular to the applied force, and their displacements are tracked using high-frame-rate ultrasound. Estimating the SWS map involves two main steps: speckle tracking and SWS estimation. Speckle tracking calculates particle velocity by measuring RF/IQ data displacement between adjacent firings, while SWS estimation methods typically compare particle velocity profiles of samples that are laterally a few millimeters apart. Deep learning (DL) methods have gained attention for SWS estimation, often relying on supervised training using simulated data. However, these methods may struggle with real-world data, which can differ significantly from the simulated training data, potentially leading to artifacts in the estimated SWS map. To address this challenge, we propose a physics-inspired learning approach that utilizes real data without known SWS values. Our method employs an adaptive unsupervised loss function, allowing the network to train with the real noisy data to minimize the artifacts and improve the robustness. We validate our approach using experimental phantom data and in vivo liver data from two human subjects, demonstrating enhanced accuracy and reliability in SWS estimation compared with conventional and supervised methods. This hybrid approach leverages the strengths of both data-driven and physics-inspired learning, offering a promising solution for more accurate and robust SWS mapping in clinical applications.

Prediction of BRAF and TERT status in PTCs by machine learning-based ultrasound radiomics methods: A multicenter study.

Shi H, Ding K, Yang XT, Wu TF, Zheng JY, Wang LF, Zhou BY, Sun LP, Zhang YF, Zhao CK, Xu HX

pubmed logopapersJun 1 2025
Preoperative identification of genetic mutations is conducive to individualized treatment and management of papillary thyroid carcinoma (PTC) patients. <i>Purpose</i>: To investigate the predictive value of the machine learning (ML)-based ultrasound (US) radiomics approaches for BRAF V600E and TERT promoter status (individually and coexistence) in PTC. This multicenter study retrospectively collected data of 1076 PTC patients underwent genetic testing detection for BRAF V600E and TERT promoter between March 2016 and December 2021. Radiomics features were extracted from routine grayscale ultrasound images, and gene status-related features were selected. Then these features were included to nine different ML models to predicting different mutations, and optimal models plus statistically significant clinical information were also conducted. The models underwent training and testing, and comparisons were performed. The Decision Tree-based US radiomics approach had superior prediction performance for the BRAF V600E mutation compared to the other eight ML models, with an area under the curve (AUC) of 0.767 versus 0.547-0.675 (p < 0.05). The US radiomics methodology employing Logistic Regression exhibited the highest accuracy in predicting TERT promoter mutations (AUC, 0.802 vs. 0.525-0.701, p < 0.001) and coexisting BRAF V600E and TERT promoter mutations (0.805 vs. 0.678-0.743, p < 0.001) within the test set. The incorporation of clinical factors enhanced predictive performances to 0.810 for BRAF V600E mutant, 0.897 for TERT promoter mutations, and 0.900 for dual mutations in PTCs. The machine learning-based US radiomics methods, integrated with clinical characteristics, demonstrated effectiveness in predicting the BRAF V600E and TERT promoter mutations in PTCs.

A Pilot Study on Deep Learning With Simplified Intravoxel Incoherent Motion Diffusion-Weighted MRI Parameters for Differentiating Hepatocellular Carcinoma From Other Common Liver Masses.

Ratiphunpong P, Inmutto N, Angkurawaranon S, Wantanajittikul K, Suwannasak A, Yarach U

pubmed logopapersJun 1 2025
To develop and evaluate a deep learning technique for the differentiation of hepatocellular carcinoma (HCC) using "simplified intravoxel incoherent motion (IVIM) parameters" derived from only 3 b-value images. Ninety-eight retrospective magnetic resonance imaging data were collected (68 men, 30 women; mean age 59 ± 14 years), including T2-weighted imaging with fat suppression, in-phase, out-of-phase, and diffusion-weighted imaging (b = 0, 100, 800 s/mm2). Ninety percent of data were used for stratified 10-fold cross-validation. After data preprocessing, diffusion-weighted imaging images were used to compute simplified IVIM and apparent diffusion coefficient (ADC) maps. A 17-layer 3D convolutional neural network (3D-CNN) was implemented, and the input channels were modified for different strategies of input images. The 3D-CNN with IVIM maps (ADC, f, and D*) demonstrated superior performance compared with other strategies, achieving an accuracy of 83.25 ± 6.24% and area under the receiver-operating characteristic curve of 92.70 ± 8.24%, significantly surpassing the baseline of 50% (P < 0.05) and outperforming other strategies in all evaluation metrics. This success underscores the effectiveness of simplified IVIM parameters in combination with a 3D-CNN architecture for enhancing HCC differentiation accuracy. Simplified IVIM parameters derived from 3 b-values, when integrated with a 3D-CNN architecture, offer a robust framework for HCC differentiation.

Visceral Fat Quantified by a Fully Automated Deep-Learning Algorithm and Risk of Incident and Recurrent Diverticulitis.

Ha J, Bridge CP, Andriole KP, Kambadakone A, Clark MJ, Narimiti A, Rosenthal MH, Fintelmann FJ, Gollub RL, Giovannucci EL, Strate LL, Ma W, Chan AT

pubmed logopapersJun 1 2025
Obesity is a risk factor for diverticulitis. However, it remains unclear whether visceral fat area, a more precise measurement of abdominal fat, is associated with the risk of diverticulitis. To estimate the risk of incident and recurrent diverticulitis according to visceral fat area. A retrospective cohort study. The Mass General Brigham Biobank. A total of 6654 patients who underwent abdominal CT for clinical indications and had no diagnosis of diverticulitis, IBD, or cancer before the scan were included. Visceral fat area, subcutaneous fat area, and skeletal muscle area were quantified using a deep-learning model applied to abdominal CT. The main exposures were z -scores of body composition metrics normalized by age, sex, and race. Diverticulitis cases were identified using the International Classification of Diseases codes for the primary or admitting diagnosis from the electronic health records. The risks of incident diverticulitis, complicated diverticulitis, and recurrent diverticulitis requiring hospitalization according to quartiles of body composition metrics z -scores were estimated. A higher visceral fat area z -score was associated with an increased risk of incident diverticulitis (multivariable HR comparing the highest vs lowest quartile, 2.09; 95% CI, 1.48-2.95; p for trend <0.0001), complicated diverticulitis (HR, 2.56; 95% CI, 1.10-5.99; p for trend = 0.02), and recurrence requiring hospitalization (HR, 2.76; 95% CI, 1.15-6.62; p for trend = 0.03). The association between visceral fat area and diverticulitis was not materially different among different strata of BMI. Subcutaneous fat area and skeletal muscle area were not significantly associated with diverticulitis. The study population was limited to individuals who underwent CT scans for medical indication. Higher visceral fat area derived from CT was associated with incident and recurrent diverticulitis. Our findings provide insight into the underlying pathophysiology of diverticulitis and may have implications for preventive strategies. See Video Abstract . ANTECEDENTES:La obesidad es un factor de riesgo de la diverticulitis. Sin embargo, sigue sin estar claro si el área de grasa visceral, con medida más precisa de la grasa abdominal esté asociada con el riesgo de diverticulitis.OBJETIVO:Estimar el riesgo de diverticulitis incidente y recurrente de acuerdo con el área de grasa visceral.DISEÑO:Un estudio de cohorte retrospectivo.AJUSTE:El Biobanco Mass General Brigham.PACIENTES:6.654 pacientes sometidos a una TC abdominal por indicaciones clínicas y sin diagnóstico de diverticulitis, enfermedad inflamatoria intestinal o cáncer antes de la exploración.PRINCIPALES MEDIDAS DE RESULTADOS:Se cuantificaron, área de grasa visceral, área de grasa subcutánea y área de músculo esquelético, utilizando un modelo de aprendizaje profundo aplicado a la TC abdominal. Las principales exposiciones fueron puntuaciones z de métricas de composición corporal, normalizadas por edad, sexo y raza. Los casos de diverticulitis se definieron con los códigos ICD para el diagnóstico primario o de admisión de los registros de salud electrónicos. Se estimaron los riesgos de diverticulitis incidente, diverticulitis complicada y diverticulitis recurrente que requiriera hospitalización según los cuartiles de las puntuaciones z de las métricas de composición corporal.RESULTADOS:Una puntuación z más alta del área de grasa visceral se asoció con un mayor riesgo de diverticulitis incidente (HR multivariable que compara el cuartil más alto con el más bajo, 2,09; IC del 95 %, 1,48-2,95; P para la tendencia < 0,0001), diverticulitis complicada (HR, 2,56; IC del 95 %, 1,10-5,99; P para la tendencia = 0,02) y recurrencia que requiriera hospitalización (HR, 2,76; IC del 95 %, 1,15-6,62; P para la tendencia = 0,03). La asociación entre el área de grasa visceral y la diverticulitis no fue materialmente diferente entre los diferentes estratos del índice de masa corporal. El área de grasa subcutánea y el área del músculo esquelético no se asociaron significativamente con la diverticulitis.LIMITACIONES:La población del estudio se limitó a individuos sometidos a tomografías computarizadas por indicación médica.CONCLUSIÓN:Una mayor área de grasa visceral derivada de la tomografía computarizada se asoció con diverticulitis incidente y recurrente. Nuestros hallazgos brindan información sobre la fisiopatología subyacente de la diverticulitis y pueden tener implicaciones para las estrategias preventivas. (Traducción: Dr. Fidel Ruiz Healy ).

Impact of artificial intelligence assisted lesion detection on radiologists' interpretation at multiparametric prostate MRI.

Nakrour N, Cochran RL, Mercaldo ND, Bradley W, Tsai LL, Prajapati P, Grimm R, von Busch H, Lo WC, Harisinghani MG

pubmed logopapersJun 1 2025
To compare prostate cancer lesion detection using conventional and artificial intelligence (AI)-assisted image interpretation at multiparametric MRI (mpMRI). A retrospective study of 53 consecutive patients who underwent prostate mpMRI and subsequent prostate tissue sampling was performed. Two board-certified radiologists (with 4 and 12 years of experience) blinded to the clinical information interpreted anonymized exams using the PI-RADS v2.1 framework without and with an AI-assistance tool. The AI software tool provided radiologists with gland segmentation and automated lesion detection assigning a probability score for the likelihood of the presence of clinically significant prostate cancer (csPCa). The reference standard for all cases was the prostate pathology from systematic and targeted biopsies. Statistical analyses assessed interrater agreement and compared diagnostic performances with and without AI assistance. Within the entire cohort, 42 patients (79 %) harbored Gleason-positive disease, with 25 patients (47 %) having csPCa. Radiologists' diagnostic performance for csPCa was significantly improved over conventional interpretation with AI assistance (reader A: AUC 0.82 vs. 0.72, p = 0.03; reader B: AUC 0.78 vs. 0.69, p = 0.03). Without AI assistance, 81 % (n = 36; 95 % CI: 0.89-0.91) of the lesions were scored similarly by radiologists for lesion-level characteristics, and with AI assistance, 59 % (26, 0.82-0.89) of the lesions were scored similarly. For reader A, there was a significant difference in PI-RADS scores (p = 0.02) between AI-assisted and non-assisted assessments. Signficant differences were not detected for reader B. AI-assisted prostate mMRI interpretation improved radiologist diagnostic performance over conventional interpretation independent of reader experience.

Future prospects of deep learning in esophageal cancer diagnosis and clinical decision support (Review).

Lin A, Song L, Wang Y, Yan K, Tang H

pubmed logopapersJun 1 2025
Esophageal cancer (EC) is one of the leading causes of cancer-related mortality worldwide, still faces significant challenges in early diagnosis and prognosis. Early EC lesions often present subtle symptoms and current diagnostic methods are limited in accuracy due to tumor heterogeneity, lesion morphology and variable image quality. These limitations are particularly prominent in the early detection of precancerous lesions such as Barrett's esophagus. Traditional diagnostic approaches, such as endoscopic examination, pathological analysis and computed tomography, require improvements in diagnostic precision and staging accuracy. Deep learning (DL), a key branch of artificial intelligence, shows great promise in improving the detection of early EC lesions, distinguishing benign from malignant lesions and aiding cancer staging and prognosis. However, challenges remain, including image quality variability, insufficient data annotation and limited generalization. The present review summarized recent advances in the application of DL to medical images obtained through various imaging techniques for the diagnosis of EC at different stages. It assesses the role of DL in tumor pathology, prognosis prediction and clinical decision support, highlighting its advantages in EC diagnosis and prognosis evaluation. Finally, it provided an objective analysis of the challenges currently facing the field and prospects for future applications.

Semi-supervised spatial-frequency transformer for metal artifact reduction in maxillofacial CT and evaluation with intraoral scan.

Li Y, Ma C, Li Z, Wang Z, Han J, Shan H, Liu J

pubmed logopapersJun 1 2025
To develop a semi-supervised domain adaptation technique for metal artifact reduction with a spatial-frequency transformer (SFTrans) model (Semi-SFTrans), and to quantitatively compare its performance with supervised models (Sup-SFTrans and ResUNet) and traditional linear interpolation MAR method (LI) in oral and maxillofacial CT. Supervised models, including Sup-SFTrans and a state-of-the-art model termed ResUNet, were trained with paired simulated CT images, while semi-supervised model, Semi-SFTrans, was trained with both paired simulated and unpaired clinical CT images. For evaluation on the simulated data, we calculated Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) on the images corrected by four methods: LI, ResUNet, Sup-SFTrans, and Semi-SFTrans. For evaluation on the clinical data, we collected twenty-two clinical cases with real metal artifacts, and the corresponding intraoral scan data. Three radiologists visually assessed the severity of artifacts using Likert scales on the original, Sup-SFTrans-corrected, and Semi-SFTrans-corrected images. Quantitative MAR evaluation was conducted by measuring Mean Hounsfield Unit (HU) values, standard deviations, and Signal-to-Noise Ratios (SNRs) across Regions of Interest (ROIs) such as the tongue, bilateral buccal, lips, and bilateral masseter muscles, using paired t-tests and Wilcoxon signed-rank tests. Further, teeth integrity in the corrected images was assessed by comparing teeth segmentation results from the corrected images against the ground-truth segmentation derived from registered intraoral scan data, using Dice Score and Hausdorff Distance. Sup-SFTrans outperformed LI, ResUNet and Semi-SFTrans on the simulated dataset. Visual assessments from the radiologists showed that average scores were (2.02 ± 0.91) for original CT, (4.46 ± 0.51) for Semi-SFTrans CT, and (3.64 ± 0.90) for Sup-SFTrans CT, with intra correlation coefficients (ICCs)>0.8 of all groups and p < 0.001 between groups. On soft tissue, both Semi-SFTrans and Sup-SFTrans significantly reduced metal artifacts in tongue (p < 0.001), lips, bilateral buccal regions, and masseter muscle areas (p < 0.05). Semi-SFTrans achieved superior metal artifact reduction than Sup-SFTrans in all ROIs (p < 0.001). SNR results indicated significant differences between Semi-SFTrans and Sup-SFTrans in tongue (p = 0.0391), bilateral buccal (p = 0.0067), lips (p = 0.0208), and bilateral masseter muscle areas (p = 0.0031). Notably, Semi-SFTrans demonstrated better teeth integrity preservation than Sup-SFTrans (Dice Score: p < 0.001; Hausdorff Distance: p = 0.0022). The semi-supervised MAR model, Semi-SFTrans, demonstrated superior metal artifact reduction performance over supervised counterparts in real dental CT images.
Page 48 of 65642 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.