Sort by:
Page 47 of 94940 results

Deep Learning-Based Automated Detection of the Middle Cerebral Artery in Transcranial Doppler Ultrasound Examinations.

Lee H, Shi W, Mukaddim RA, Brunelle E, Palisetti A, Imaduddin SM, Rajendram P, Incontri D, Lioutas VA, Heldt T, Raju BI

pubmed logopapersJun 28 2025
Transcranial Doppler (TCD) ultrasound has significant clinical value for assessing cerebral hemodynamics, but its reliance on operator expertise limits broader clinical adoption. In this work, we present a lightweight real-time deep learning-based approach capable of automatically identifying the middle cerebral artery (MCA) in TCD Color Doppler images. Two state-of-the-art object detection models, YOLOv10 and Real-Time Detection Transformers (RT-DETR), were investigated for automated MCA detection in real-time. TCD Color Doppler data (41 subjects; 365 videos; 61,611 frames) were collected from neurologically healthy individuals (n = 31) and stroke patients (n = 10). MCA bounding box annotations were performed by clinical experts on all frames. Model training consisted of pretraining utilizing a large abdominal ultrasound dataset followed by subsequent fine-tuning on acquired TCD data. Detection performance at the instance and frame levels, and inference speed were assessed through four-fold cross-validation. Inter-rater agreement between model and two human expert readers was assessed using distance between bounding boxes and inter-rater variability was quantified using the individual equivalence coefficient (IEC) metric. Both YOLOv10 and RT-DETR models showed comparable frame level accuracy for MCA presence, with F1 scores of 0.884 ± 0.023 and 0.884 ± 0.019 respectively. YOLOv10 outperformed RT-DETR for instance-level localization accuracy (AP: 0.817 vs. 0.780) and had considerably faster inference speed on a desktop CPU (11.6 ms vs. 91.14 ms). Furthermore, YOLOv10 showed an average inference time of 36 ms per frame on a tablet device. The IEC was -1.08 with 95 % confidence interval: [-1.45, -0.19], showing that the AI predictions deviated less from each reader than the readers' annotations deviated from each other. Real-time automated detection of the MCA is feasible and can be implemented on mobile platforms, potentially enabling wider clinical adoption by less-trained operators in point-of-care settings.

Novel Artificial Intelligence-Driven Infant Meningitis Screening From High-Resolution Ultrasound Imaging.

Sial HA, Carandell F, Ajanovic S, Jiménez J, Quesada R, Santos F, Buck WC, Sidat M, Bassat Q, Jobst B, Petrone P

pubmed logopapersJun 28 2025
Infant meningitis can be a life-threatening disease and requires prompt and accurate diagnosis to prevent severe outcomes or death. Gold-standard diagnosis requires lumbar puncture (LP) to obtain and analyze cerebrospinal fluid (CSF). Despite being standard practice, LPs are invasive, pose risks for the patient and often yield negative results, either due to contamination with red blood cells from the puncture itself or because LPs are routinely performed to rule out a life-threatening infection, despite the disease's relatively low incidence. Furthermore, in low-income settings where incidence is the highest, LPs and CSF exams are rarely feasible, and suspected meningitis cases are generally treated empirically. There is a growing need for non-invasive, accurate diagnostic methods. We developed a three-stage deep learning framework using Neosonics ultrasound technology for 30 infants with suspected meningitis and a permeable fontanelle at three Spanish University Hospitals (from 2021 to 2023). In stage 1, 2194 images were processed for quality control using a vessel/non-vessel model, with a focus on vessel identification and manual removal of images exhibiting artifacts such as poor coupling and clutter. This refinement process resulted in a final cohort comprising 16 patients-6 cases (336 images) and 10 controls (445 images), yielding 781 images for the second stage. The second stage involved the use of a deep learning model to classify images based on a white blood cell count threshold (set at 30 cells/mm<sup>3</sup>) into control or meningitis categories. The third stage integrated explainable artificial intelligence (XAI) methods, such as Grad-CAM visualizations, alongside image statistical analysis, to provide transparency and interpretability of the model's decision-making process in our artificial intelligence-driven screening tool. Our approach achieved 96% accuracy in quality control and 93% precision and 92% accuracy in image-level meningitis detection, with an overall patient-level accuracy of 94%. It identified 6 meningitis cases and 10 controls with 100% sensitivity and 90% specificity, demonstrating only a single misclassification. The use of gradient-weighted class activation mapping-based XAI significantly enhanced diagnostic interpretability, and to further refine our insights we incorporated a statistics-based XAI approach. By analyzing image metrics such as entropy and standard deviation, we identified texture variations in the images attributable to the presence of cells, which improved the interpretability of our diagnostic tool. This study supports the efficacy of a multi-stage deep learning model for non-invasive screening of infant meningitis and its potential to guide the need for LPs. It also highlights the transformative potential of artificial intelligence in medical diagnostic screening for neonatal health care, paving the way for future research and innovations.

CA-Diff: Collaborative Anatomy Diffusion for Brain Tissue Segmentation

Qilong Xing, Zikai Song, Yuteng Ye, Yuke Chen, Youjia Zhang, Na Feng, Junqing Yu, Wei Yang

arxiv logopreprintJun 28 2025
Segmentation of brain structures from MRI is crucial for evaluating brain morphology, yet existing CNN and transformer-based methods struggle to delineate complex structures accurately. While current diffusion models have shown promise in image segmentation, they are inadequate when applied directly to brain MRI due to neglecting anatomical information. To address this, we propose Collaborative Anatomy Diffusion (CA-Diff), a framework integrating spatial anatomical features to enhance segmentation accuracy of the diffusion model. Specifically, we introduce distance field as an auxiliary anatomical condition to provide global spatial context, alongside a collaborative diffusion process to model its joint distribution with anatomical structures, enabling effective utilization of anatomical features for segmentation. Furthermore, we introduce a consistency loss to refine relationships between the distance field and anatomical structures and design a time adapted channel attention module to enhance the U-Net feature fusion procedure. Extensive experiments show that CA-Diff outperforms state-of-the-art (SOTA) methods.

Association of Covert Cerebrovascular Disease With Falls Requiring Medical Attention.

Clancy Ú, Puttock EJ, Chen W, Whiteley W, Vickery EM, Leung LY, Luetmer PH, Kallmes DF, Fu S, Zheng C, Liu H, Kent DM

pubmed logopapersJun 27 2025
The impact of covert cerebrovascular disease on falls in the general population is not well-known. Here, we determine the time to a first fall following incidentally detected covert cerebrovascular disease during a clinical neuroimaging episode. This longitudinal cohort study assessed computed tomography (CT) and magnetic resonance imaging from 2009 to 2019 of patients aged >50 years registered with Kaiser Permanente Southern California which is a healthcare organization combining health plan coverage with coordinated medical services, excluding those with before stroke/dementia. We extracted evidence of incidental covert brain infarcts (CBI) and white matter hyperintensities/hypoattenuation (WMH) from imaging reports using natural language processing. We examined associations of CBI and WMH with falls requiring medical attention, using Cox proportional hazards regression models with adjustment for 12 variables including age, sex, ethnicity multimorbidity, polypharmacy, and incontinence. We assessed 241 050 patients, mean age 64.9 (SD, 10.42) years, 61.3% female, detecting covert cerebrovascular disease in 31.1% over a mean follow-up duration of 3.04 years. A recorded fall occurred in 21.2% (51 239/241 050) during follow-up. On CT, single fall incidence rate/1000 person-years (p-y) was highest in individuals with both CBI and WMH on CT (129.3 falls/1000 p-y [95% CI, 123.4-135.5]), followed by WMH (109.9 falls/1000 p-y [108.0-111.9]). On magnetic resonance imaging, the incidence rate was the highest with both CBI and WMH (76.3 falls/1000 p-y [95% CI, 69.7-83.2]), followed by CBI (71.4 falls/1000 p-y [95% CI, 65.9-77.2]). The adjusted hazard ratio for single index fall in individuals with CBI on CT was 1.13 (95% CI, 1.09-1.17); versus magnetic resonance imaging 1.17 (95% CI, 1.08-1.27). On CT, the risk for single index fall incrementally increased for mild (1.37 [95% CI, 1.32-1.43]), moderate (1.57 [95% CI, 1.48-1.67]), or severe WMH (1.57 [95% CI, 1.45-1.70]). On magnetic resonance imaging, index fall risk similarly increased with increasing WMH severity: mild (1.11 [95% CI, 1.07-1.17]), moderate (1.21 [95% CI, 1.13-1.28]), and severe WMH (1.34 [95% CI, 1.22-1.46]). In a large population with neuroimaging, CBI and WMH are independently associated with greater risks of an index fall. Increasing severities of WMH are associated incrementally with fall risk across imaging modalities.

Towards Scalable and Robust White Matter Lesion Localization via Multimodal Deep Learning

Julia Machnio, Sebastian Nørgaard Llambias, Mads Nielsen, Mostafa Mehdipour Ghazi

arxiv logopreprintJun 27 2025
White matter hyperintensities (WMH) are radiological markers of small vessel disease and neurodegeneration, whose accurate segmentation and spatial localization are crucial for diagnosis and monitoring. While multimodal MRI offers complementary contrasts for detecting and contextualizing WM lesions, existing approaches often lack flexibility in handling missing modalities and fail to integrate anatomical localization efficiently. We propose a deep learning framework for WM lesion segmentation and localization that operates directly in native space using single- and multi-modal MRI inputs. Our study evaluates four input configurations: FLAIR-only, T1-only, concatenated FLAIR and T1, and a modality-interchangeable setup. It further introduces a multi-task model for jointly predicting lesion and anatomical region masks to estimate region-wise lesion burden. Experiments conducted on the MICCAI WMH Segmentation Challenge dataset demonstrate that multimodal input significantly improves the segmentation performance, outperforming unimodal models. While the modality-interchangeable setting trades accuracy for robustness, it enables inference in cases with missing modalities. Joint lesion-region segmentation using multi-task learning was less effective than separate models, suggesting representational conflict between tasks. Our findings highlight the utility of multimodal fusion for accurate and robust WMH analysis, and the potential of joint modeling for integrated predictions.

Regional Cortical Thinning and Area Reduction Are Associated with Cognitive Impairment in Hemodialysis Patients.

Chen HJ, Qiu J, Qi Y, Guo Y, Zhang Z, Qin H, Wu F, Chen F

pubmed logopapersJun 27 2025
Magnetic resonance imaging (MRI) has shown that patients with end-stage renal disease have decreased gray matter volume and density. However, the cortical area and thickness in patients on hemodialysis are uncertain, and the relationship between patients' cognition and cortical alterations remains unclear. Thirty-six hemodialysis patients and 25 age- and sex-matched healthy controls were enrolled in this study and underwent brain MRI scans and neuropsychological assessments. According to the Desikan-Killiany atlas, the brain is divided into 68 regions. Using FreeSurfer software, we analyzed the differences in cortical area and thickness of each region between groups. Machine learning-based classification was also used to differentiate hemodialysis patients from healthy individuals. The patients exhibited decreased cortical thickness in the frontal and temporal regions, including the left bankssts, left lingual gyrus, left pars triangularis, bilateral superior temporal gyrus, and right pars opercularis and decreased cortical area in the left rostral middle frontal gyrus, left superior frontal gyrus, right fusiform gyrus, right pars orbitalis and right superior frontal gyrus. Decreased cortical thickness was positively associated with poorer scores on the neuropsychological tests and increased uric acid and urea levels. Cortical thickness pattern allowed differentiating the patients from the controls with 96.7% accuracy (97.5% sensitivity, 95.0% specificity, 97.5% precision, and AUC: 0.983) on the support vector machine analysis. Patients on hemodialysis exhibited decreased cortical area and thickness, which was associated with poorer cognition and uremic toxins.

Deep learning for hydrocephalus prognosis: Advances, challenges, and future directions: A review.

Huang J, Shen N, Tan Y, Tang Y, Ding Z

pubmed logopapersJun 27 2025
Diagnosis of hydrocephalus involves a careful check of the patient's history and thorough neurological assessment. The traditional diagnosis has predominantly depended on the professional judgment of physicians based on clinical experience, but with the advancement of precision medicine and individualized treatment, such experience-based methods are no longer sufficient to keep pace with current clinical requirements. To fit this adjustment, the medical community actively devotes itself to data-driven intelligent diagnostic solutions. Building a prognosis prediction model for hydrocephalus has thus become a new focus, among which intelligent prediction systems supported by deep learning offer new technical advantages for clinical diagnosis and treatment decisions. Over the past several years, algorithms of deep learning have demonstrated conspicuous advantages in medical image analysis. Studies revealed that the accuracy rate of the diagnosis of hydrocephalus by magnetic resonance imaging can reach 90% through convolutional neural networks, while their sensitivity and specificity are also better than these of traditional methods. With the extensive use of medical technology in terms of deep learning, its successful use in modeling hydrocephalus prognosis has also drawn extensive attention and recognition from scholars. This review explores the application of deep learning in hydrocephalus diagnosis and prognosis, focusing on image-based, biochemical, and structured data models. Highlighting recent advancements, challenges, and future trajectories, the study emphasizes deep learning's potential to enhance personalized treatment and improve outcomes.

BrainMT: A Hybrid Mamba-Transformer Architecture for Modeling Long-Range Dependencies in Functional MRI Data

Arunkumar Kannan, Martin A. Lindquist, Brian Caffo

arxiv logopreprintJun 27 2025
Recent advances in deep learning have made it possible to predict phenotypic measures directly from functional magnetic resonance imaging (fMRI) brain volumes, sparking significant interest in the neuroimaging community. However, existing approaches, primarily based on convolutional neural networks or transformer architectures, often struggle to model the complex relationships inherent in fMRI data, limited by their inability to capture long-range spatial and temporal dependencies. To overcome these shortcomings, we introduce BrainMT, a novel hybrid framework designed to efficiently learn and integrate long-range spatiotemporal attributes in fMRI data. Our framework operates in two stages: (1) a bidirectional Mamba block with a temporal-first scanning mechanism to capture global temporal interactions in a computationally efficient manner; and (2) a transformer block leveraging self-attention to model global spatial relationships across the deep features processed by the Mamba block. Extensive experiments on two large-scale public datasets, UKBioBank and the Human Connectome Project, demonstrate that BrainMT achieves state-of-the-art performance on both classification (sex prediction) and regression (cognitive intelligence prediction) tasks, outperforming existing methods by a significant margin. Our code and implementation details will be made publicly available at this https://github.com/arunkumar-kannan/BrainMT-fMRI

Machine learning to identify hypoxic-ischemic brain injury on early head CT after pediatric cardiac arrest.

Kirschen MP, Li J, Elmer J, Manteghinejad A, Arefan D, Graham K, Morgan RW, Nadkarni V, Diaz-Arrastia R, Berg R, Topjian A, Vossough A, Wu S

pubmed logopapersJun 27 2025
To train deep learning models to detect hypoxic-ischemic brain injury (HIBI) on early CT scans after pediatric out-of-hospital cardiac arrest (OHCA) and determine if models could identify HIBI that was not visually appreciable to a radiologist. Retrospective study of children who had a CT scan within 24 hours of OHCA compared to age-matched controls. We designed models to detect HIBI by discriminating CT images from OHCA cases and controls, and predict death and unfavorable outcome (PCPC 4-6 at hospital discharge) among cases. Model performance was measured by AUC. We trained a second model to distinguish OHCA cases with radiologist-identified HIBI from controls without OHCA and tested the model on OHCA cases without radiologist-identified HIBI. We compared outcomes between OHCA cases with and without model-categorized HIBI. We analyzed 117 OHCA cases (age 3.1 [0.7-12.2] years); 43% died and 58% had unfavorable outcome. Median time from arrest to CT was 2.1 [1.0,7.2] hours. Deep learning models discriminated OHCA cases from controls with a mean AUC of 0.87±0.05. Among OHCA cases, mean AUCs for predicting death and unfavorable outcome were 0.79±0.06 and 0.69±0.06, respectively. Mean AUC was 0.98±0.01for discriminating between 44 OHCA cases with radiologist-identified HIBI and controls. Among 73 OHCA cases without radiologist-identified HIBI, the model identified 36% as having presumed HIBI; 31% of whom died compared to 17% of cases without HIBI identified radiologically and via the model (p=0.174). Deep learning models can identify HIBI on early CT images after pediatric OHCA and detect some presumed HIBI visually not identified by a radiologist.

Quantifying Sagittal Craniosynostosis Severity: A Machine Learning Approach With CranioRate.

Tao W, Somorin TJ, Kueper J, Dixon A, Kass N, Khan N, Iyer K, Wagoner J, Rogers A, Whitaker R, Elhabian S, Goldstein JA

pubmed logopapersJun 27 2025
ObjectiveTo develop and validate machine learning (ML) models for objective and comprehensive quantification of sagittal craniosynostosis (SCS) severity, enhancing clinical assessment, management, and research.DesignA cross-sectional study that combined the analysis of computed tomography (CT) scans and expert ratings.SettingThe study was conducted at a children's hospital and a major computer imaging institution. Our survey collected expert ratings from participating surgeons.ParticipantsThe study included 195 patients with nonsyndromic SCS, 221 patients with nonsyndromic metopic craniosynostosis (CS), and 178 age-matched controls. Fifty-four craniofacial surgeons participated in rating 20 patients head CT scans.InterventionsComputed tomography scans for cranial morphology assessment and a radiographic diagnosis of nonsyndromic SCS.Main OutcomesAccuracy of the proposed Sagittal Severity Score (SSS) in predicting expert ratings compared to cephalic index (CI). Secondary outcomes compared Likert ratings with SCS status, the predictive power of skull-based versus skin-based landmarks, and assessments of an unsupervised ML model, the Cranial Morphology Deviation (CMD), as an alternative without ratings.ResultsThe SSS achieved significantly higher accuracy in predicting expert responses than CI (<i>P</i> < .05). Likert ratings outperformed SCS status in supervising ML models to quantify within-group variations. Skin-based landmarks demonstrated equivalent predictive power as skull landmarks (<i>P</i> < .05, threshold 0.02). The CMD demonstrated a strong correlation with the SSS (Pearson coefficient: 0.92, Spearman coefficient: 0.90, <i>P</i> < .01).ConclusionsThe SSS and CMD can provide accurate, consistent, and comprehensive quantification of SCS severity. Implementing these data-driven ML models can significantly advance CS care through standardized assessments, enhanced precision, and informed surgical planning.
Page 47 of 94940 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.