Sort by:
Page 46 of 1321311 results

A two-step automatic identification of contrast phases for abdominal CT images based on residual networks.

Liu Q, Jiang J, Wu K, Zhang Y, Sun N, Luo J, Ba T, Lv A, Liu C, Yin Y, Yang Z, Xu H

pubmed logopapersJun 27 2025
To develop a deep learning model based on Residual Networks (ResNet) for the automated and accurate identification of contrast phases in abdominal CT images. A dataset of 1175 abdominal contrast-enhanced CT scans was retrospectively collected for the model development, and another independent dataset of 215 scans from five hospitals was collected for external testing. Each contrast phase was independently annotated by two radiologists. A ResNet-based model was developed to automatically classify phases into the early arterial phase (EAP) or late arterial phase (LAP), portal venous phase (PVP), and delayed phase (DP). Strategy A identified EAP or LAP, PVP, and DP in one step. Strategy B used a two-step approach: first classifying images as arterial phase (AP), PVP, and DP, then further classifying AP images into EAP or LAP. Model performance and strategy comparison were evaluated. In the internal test set, the overall accuracy of the two-step strategy was 98.3% (283/288; p < 0.001), significantly higher than that of the one-step strategy (91.7%, 264/288; p < 0.001). In the external test set, the two-step model achieved an overall accuracy of 99.1% (639/645), with sensitivities of 95.1% (EAP), 99.4% (LAP), 99.5% (PVP), and 99.5% (DP). The proposed two-step ResNet-based model provides highly accurate and robust identification of contrast phases in abdominal CT images, outperforming the conventional one-step strategy. Automated and accurate identification of contrast phases in abdominal CT images provides a robust tool for improving image quality control and establishes a strong foundation for AI-driven applications, particularly those leveraging contrast-enhanced abdominal imaging data. Accurate identification of contrast phases is crucial in abdominal CT imaging. The two-step ResNet-based model achieved superior accuracy across internal and external datasets. Automated phase classification strengthens imaging quality control and supports precision AI applications.

Deep Learning-Based Prediction of PET Amyloid Status Using MRI.

Kim D, Ottesen JA, Kumar A, Ho BC, Bismuth E, Young CB, Mormino E, Zaharchuk G

pubmed logopapersJun 27 2025
Identifying amyloid-beta (Aβ)-positive patients is essential for Alzheimer's disease (AD) clinical trials and disease-modifying treatments but currently requires PET or cerebrospinal fluid sampling. Previous MRI-based deep learning models, using only T1-weighted (T1w) images, have shown moderate performance. Multi-contrast MRI and PET-based quantitative Aβ deposition were retrospectively obtained from three public datasets: ADNI, OASIS3, and A4. Aβ positivity was defined using each dataset's recommended centiloid threshold. Two EfficientNet models were trained to predict amyloid positivity: one using only T1w images and another incorporating both T1w and T2-FLAIR. Model performance was assessed using an internal held-out test set, evaluating AUC, accuracy, sensitivity, and specificity. External validation was conducted using an independent cohort from Stanford Alzheimer's Disease Research Center. DeLong's and McNemar's tests were used to compare AUC and accuracy, respectively. A total of 4,056 exams (mean [SD] age: 71.6 [6.3] years; 55% female; 55% amyloid-positive) were used for network development, and 149 exams were used for external testing (mean [SD] age: 72.1 [9.6] years; 58% female; 56% amyloid-positive). The multi-contrast model outperformed the single-modality model in the internal held-out test set (AUC: 0.67, 95% CI: 0.65-0.70, <i>P</i> < 0.001; accuracy: 0.63, 95% CI: 0.62-0.65, <i>P</i> < 0.001) compared to the T1w-only model (AUC: 0.61; accuracy: 0.59). Among cognitive subgroups, the highest performance (AUC: 0.71) was observed in mild cognitive impairment. The multi-contrast model also demonstrated consistent performance in the external test set (AUC: 0.65, 95% CI: 0.60-0.71, <i>P</i> = 0.014; accuracy: 0.62, 95% CI: 0.58- 0.65, <i>P</i> < 0.001). The use of multi-contrast MRI, specifically incorporating T2-FLAIR in addition to T1w images, significantly improved the predictive accuracy of PET-determined amyloid status from MRI scans using a deep learning approach. Aβ= amyloid-beta; AD= Alzheimer's disease; AUC= area under the receiver operating characteristic curve; CN= cognitively normal; MCI= mild cognitive impairment; T1w = T1-wegithed; T2-FLAIR = T2-weighted fluid attenuated inversion recovery; FBP=<sup>18</sup>F-florbetapir; FBB=<sup>18</sup>F-florbetaben; SUVR= standard uptake value ratio.

Cardiovascular disease classification using radiomics and geometric features from cardiac CT

Ajay Mittal, Raghav Mehta, Omar Todd, Philipp Seeböck, Georg Langs, Ben Glocker

arxiv logopreprintJun 27 2025
Automatic detection and classification of Cardiovascular disease (CVD) from Computed Tomography (CT) images play an important part in facilitating better-informed clinical decisions. However, most of the recent deep learning based methods either directly work on raw CT data or utilize it in pair with anatomical cardiac structure segmentation by training an end-to-end classifier. As such, these approaches become much more difficult to interpret from a clinical perspective. To address this challenge, in this work, we break down the CVD classification pipeline into three components: (i) image segmentation, (ii) image registration, and (iii) downstream CVD classification. Specifically, we utilize the Atlas-ISTN framework and recent segmentation foundational models to generate anatomical structure segmentation and a normative healthy atlas. These are further utilized to extract clinically interpretable radiomic features as well as deformation field based geometric features (through atlas registration) for CVD classification. Our experiments on the publicly available ASOCA dataset show that utilizing these features leads to better CVD classification accuracy (87.50\%) when compared against classification model trained directly on raw CT images (67.50\%). Our code is publicly available: https://github.com/biomedia-mira/grc-net

BrainMT: A Hybrid Mamba-Transformer Architecture for Modeling Long-Range Dependencies in Functional MRI Data

Arunkumar Kannan, Martin A. Lindquist, Brian Caffo

arxiv logopreprintJun 27 2025
Recent advances in deep learning have made it possible to predict phenotypic measures directly from functional magnetic resonance imaging (fMRI) brain volumes, sparking significant interest in the neuroimaging community. However, existing approaches, primarily based on convolutional neural networks or transformer architectures, often struggle to model the complex relationships inherent in fMRI data, limited by their inability to capture long-range spatial and temporal dependencies. To overcome these shortcomings, we introduce BrainMT, a novel hybrid framework designed to efficiently learn and integrate long-range spatiotemporal attributes in fMRI data. Our framework operates in two stages: (1) a bidirectional Mamba block with a temporal-first scanning mechanism to capture global temporal interactions in a computationally efficient manner; and (2) a transformer block leveraging self-attention to model global spatial relationships across the deep features processed by the Mamba block. Extensive experiments on two large-scale public datasets, UKBioBank and the Human Connectome Project, demonstrate that BrainMT achieves state-of-the-art performance on both classification (sex prediction) and regression (cognitive intelligence prediction) tasks, outperforming existing methods by a significant margin. Our code and implementation details will be made publicly available at this https://github.com/arunkumar-kannan/BrainMT-fMRI

Deep learning for hydrocephalus prognosis: Advances, challenges, and future directions: A review.

Huang J, Shen N, Tan Y, Tang Y, Ding Z

pubmed logopapersJun 27 2025
Diagnosis of hydrocephalus involves a careful check of the patient's history and thorough neurological assessment. The traditional diagnosis has predominantly depended on the professional judgment of physicians based on clinical experience, but with the advancement of precision medicine and individualized treatment, such experience-based methods are no longer sufficient to keep pace with current clinical requirements. To fit this adjustment, the medical community actively devotes itself to data-driven intelligent diagnostic solutions. Building a prognosis prediction model for hydrocephalus has thus become a new focus, among which intelligent prediction systems supported by deep learning offer new technical advantages for clinical diagnosis and treatment decisions. Over the past several years, algorithms of deep learning have demonstrated conspicuous advantages in medical image analysis. Studies revealed that the accuracy rate of the diagnosis of hydrocephalus by magnetic resonance imaging can reach 90% through convolutional neural networks, while their sensitivity and specificity are also better than these of traditional methods. With the extensive use of medical technology in terms of deep learning, its successful use in modeling hydrocephalus prognosis has also drawn extensive attention and recognition from scholars. This review explores the application of deep learning in hydrocephalus diagnosis and prognosis, focusing on image-based, biochemical, and structured data models. Highlighting recent advancements, challenges, and future trajectories, the study emphasizes deep learning's potential to enhance personalized treatment and improve outcomes.

Regional Cortical Thinning and Area Reduction Are Associated with Cognitive Impairment in Hemodialysis Patients.

Chen HJ, Qiu J, Qi Y, Guo Y, Zhang Z, Qin H, Wu F, Chen F

pubmed logopapersJun 27 2025
Magnetic resonance imaging (MRI) has shown that patients with end-stage renal disease have decreased gray matter volume and density. However, the cortical area and thickness in patients on hemodialysis are uncertain, and the relationship between patients' cognition and cortical alterations remains unclear. Thirty-six hemodialysis patients and 25 age- and sex-matched healthy controls were enrolled in this study and underwent brain MRI scans and neuropsychological assessments. According to the Desikan-Killiany atlas, the brain is divided into 68 regions. Using FreeSurfer software, we analyzed the differences in cortical area and thickness of each region between groups. Machine learning-based classification was also used to differentiate hemodialysis patients from healthy individuals. The patients exhibited decreased cortical thickness in the frontal and temporal regions, including the left bankssts, left lingual gyrus, left pars triangularis, bilateral superior temporal gyrus, and right pars opercularis and decreased cortical area in the left rostral middle frontal gyrus, left superior frontal gyrus, right fusiform gyrus, right pars orbitalis and right superior frontal gyrus. Decreased cortical thickness was positively associated with poorer scores on the neuropsychological tests and increased uric acid and urea levels. Cortical thickness pattern allowed differentiating the patients from the controls with 96.7% accuracy (97.5% sensitivity, 95.0% specificity, 97.5% precision, and AUC: 0.983) on the support vector machine analysis. Patients on hemodialysis exhibited decreased cortical area and thickness, which was associated with poorer cognition and uremic toxins.

Machine learning-based radiomic nomogram from unenhanced computed tomography and clinical data predicts bowel resection in incarcerated inguinal hernia.

Li DL, Zhu L, Liu SL, Wang ZB, Liu JN, Zhou XM, Hu JL, Liu RQ

pubmed logopapersJun 27 2025
Early identification of bowel resection risks is crucial for patients with incarcerated inguinal hernia (IIH). However, the prompt detection of these risks remains a significant challenge. Advancements in radiomic feature extraction and machine learning algorithms have paved the way for innovative diagnostic approaches to assess IIH more effectively. To devise a sophisticated radiomic-clinical model to evaluate bowel resection risks in IIH patients, thereby enhancing clinical decision-making processes. This single-center retrospective study analyzed 214 IIH patients randomized into training (<i>n</i> = 161) and test (<i>n</i> = 53) sets (3:1). Radiologists segmented hernia sac-trapped bowel volumes of interest (VOIs) on computed tomography images. Radiomic features extracted from VOIs generated Rad-scores, which were combined with clinical data to construct a nomogram. The nomogram's performance was evaluated against standalone clinical and radiomic models in both cohorts. A total of 1561 radiomic features were extracted from the VOIs. After dimensionality reduction, 13 radiomic features were used with eight machine learning algorithms to develop the radiomic model. The logistic regression algorithm was ultimately selected for its effectiveness, showing an area under the curve (AUC) of 0.828 [95% confidence interval (CI): 0.753-0.902] in the training set and 0.791 (95%CI: 0.668-0.915) in the test set. The comprehensive nomogram, incorporating clinical indicators showcased strong predictive capabilities for assessing bowel resection risks in IIH patients, with AUCs of 0.864 (95%CI: 0.800-0.929) and 0.800 (95%CI: 0.669-0.931) for the training and test sets, respectively. Decision curve analysis revealed the integrated model's superior performance over standalone clinical and radiomic approaches. This innovative radiomic-clinical nomogram has proven to be effective in predicting bowel resection risks in IIH patients and has substantially aided clinical decision-making.

White Box Modeling of Self-Determined Sequence Exercise Program Among Sarcopenic Older Adults: Uncovering a Novel Strategy Overcoming Decline of Skeletal Muscle Area.

Wei M, He S, Meng D, Lv Z, Guo H, Yang G, Wang Z

pubmed logopapersJun 27 2025
Resistance exercise, Taichi exercise, and the hybrid exercise program consisting of the two aforementioned methods have been demonstrated to increase the skeletal muscle mass of older individuals with sarcopenia. However, the exercise sequence has not been comprehensively investigated. Therefore, we designed a self-determined sequence exercise program, incorporating resistance exercises, Taichi, and the hybrid exercise program to overcome the decline of skeletal muscle area and reverse sarcopenia in older individuals. Ninety-one older patients with sarcopenia between the ages of 60 and 75 completed this three-stage randomized controlled trial for 24 weeks, including the self-determined sequence exercise program group (n = 31), the resistance training group (n = 30), and the control group (n = 30). We used quantitative computed tomography to measure the effects of different intervention protocols on skeletal muscle mass in participants. Participants' demographic variables were analyzed using one-way analysis of variance and chi-square tests, and experimental data were examined using repeated-measures analysis of variance. Furthermore, we utilized the Markov model to explain the effectiveness of the exercise programs among the three-stage intervention and explainable artificial intelligence to predict whether intervention programs can reverse sarcopenia. Repeated-measures analysis of variance results indicated that there were statistically significant Group × Time interactions detected in the L3 skeletal muscle density, L3 skeletal muscle area, muscle fat infiltration, handgrip strength, and relative skeletal muscle mass index. The stacking model exhibited the best accuracy (84.5%) and the best F1-score (68.8%) compared to other algorithms. In the self-determined sequence exercise program group, strength training contributed most to the reversal of sarcopenia. One self-determined sequence exercise program can improve skeletal muscle area among sarcopenic older people. Based on our stacking model, we can predict whether sarcopenia in older people can be reversed accurately. The trial was registered in ClinicalTrials.gov. TRN:NCT05694117. Our findings indicate that such tailored exercise interventions can substantially benefit sarcopenic patients, and our stacking model provides an accurate predictive tool for assessing the reversibility of sarcopenia in older adults. This approach not only enhances individual health outcomes but also informs future development of targeted exercise programs to mitigate age-related muscle decline.

HGTL: A hypergraph transfer learning framework for survival prediction of ccRCC.

Han X, Li W, Zhang Y, Li P, Zhu J, Zhang T, Wang R, Gao Y

pubmed logopapersJun 27 2025
The clinical diagnosis of clear cell renal cell carcinoma (ccRCC) primarily depends on histopathological analysis and computed tomography (CT). Although pathological diagnosis is regarded as the gold standard, invasive procedures such as biopsy carry the risk of tumor dissemination. Conversely, CT scanning offers a non-invasive alternative, but its resolution may be inadequate for detecting microscopic tumor features, which limits the performance of prognostic assessments. To address this issue, we propose a high-order correlation-driven method for predicting the survival of ccRCC using only CT images, achieving performance comparable to that of the pathological gold standard. The proposed method utilizes a cross-modal hypergraph neural network based on hypergraph transfer learning to perform high-order correlation modeling and semantic feature extraction from whole-slide pathological images and CT images. By employing multi-kernel maximum mean discrepancy, we transfer the high-order semantic features learned from pathological images to the CT-based hypergraph neural network channel. During the testing phase, high-precision survival predictions were achieved using only CT images, eliminating the need for pathological images. This approach not only reduces the risks associated with invasive examinations for patients but also significantly enhances clinical diagnostic efficiency. The proposed method was validated using four datasets: three collected from different hospitals and one from the public TCGA dataset. Experimental results indicate that the proposed method achieves higher concordance indices across all datasets compared to other methods.

Clinician-Led Code-Free Deep Learning for Detecting Papilloedema and Pseudopapilloedema Using Optic Disc Imaging

Shenoy, R., Samra, G. S., Sekhri, R., Yoon, H.-J., Teli, S., DeSilva, I., Tu, Z., Maconachie, G. D., Thomas, M. G.

medrxiv logopreprintJun 26 2025
ImportanceDifferentiating pseudopapilloedema from papilloedema is challenging, but critical for prompt diagnosis and to avoid unnecessary invasive procedures. Following diagnosis of papilloedema, objectively grading severity is important for determining urgency of management and therapeutic response. Automated machine learning (AutoML) has emerged as a promising tool for diagnosis in medical imaging and may provide accessible opportunities for consistent and accurate diagnosis and severity grading of papilloedema. ObjectiveThis study evaluates the feasibility of AutoML models for distinguishing the presence and severity of papilloedema using near infrared reflectance images (NIR) obtained from standard optical coherence tomography (OCT), comparing the performance of different AutoML platforms. Design, setting and participantsA retrospective cohort study was conducted using data from University Hospitals of Leicester, NHS Trust. The study involved 289 adults and children patients (813 images) who underwent optic nerve head-centred OCT imaging between 2021 and 2024. The dataset included patients with normal optic discs (69 patients, 185 images), papilloedema (135 patients, 372 images), and optic disc drusen (ODD) (85 patients, 256 images). AutoML platforms - Amazon Rekognition, Medic Mind (MM) and Google Vertex were evaluated for their ability to classify and grade papilloedema severity. Main outcomes and measuresTwo classification tasks were performed: (1) distinguishing papilloedema from normal discs and ODD; (2) grading papilloedema severity (mild/moderate vs. severe). Model performance was evaluated using area under the curve (AUC), precision, recall, F1 score, and confusion matrices for all six models. ResultsAmazon Rekognition outperformed the other platforms, achieving the highest AUC (0.90) and F1 score (0.81) in distinguishing papilloedema from normal/ODD. For papilloedema severity grading, Amazon Rekognition also performed best, with an AUC of 0.90 and F1 score of 0.79. Google Vertex and Medic Mind demonstrated good performance but had slightly lower accuracy and higher misclassification rates. Conclusions and relevanceThis evaluation of three widely available AutoML platforms using NIR images obtained from standard OCT shows promise in distinguishing and grading papilloedema. These models provide an accessible, scalable solution for clinical teams without coding expertise to feasibly develop intelligent diagnostic systems to recognise and characterise papilloedema. Further external validation and prospective testing is needed to confirm their clinical utility and applicability in diverse settings. Key PointsQuestion: Can clinician-led, code-free deep learning models using automated machine learning (AutoML) accurately differentiate papilloedema from pseudopapilloedema using optic disc imaging? Findings: Three widely available AutoML platforms were used to develop models that successfully distinguish the presence and severity of papilloedema on optic disc imaging, with Amazon Rekognition demonstrating the highest performance. Meaning: AutoML may assist clinical teams, even those with limited coding expertise, in diagnosing papilloedema, potentially reducing the need for invasive investigations.
Page 46 of 1321311 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.