Sort by:
Page 46 of 2352345 results

Enhancing diagnostic precision for thyroid C-TIRADS category 4 nodules: a hybrid deep learning and machine learning model integrating grayscale and elastographic ultrasound features.

Zou D, Lyu F, Pan Y, Fan X, Du J, Mai X

pubmed logopapersSep 1 2025
Accurate and timely diagnosis of thyroid cancer is critical for clinical care, and artificial intelligence can enhance this process. This study aims to develop and validate an intelligent assessment model called C-TNet, based on the Chinese Guidelines for Ultrasound Malignancy Risk Stratification of Thyroid Nodules (C-TIRADS) and real-time elasticity imaging. The goal is to differentiate between benign and malignant characteristics of thyroid nodules classified as C-TIRADS category 4. We evaluated the performance of C-TNet against ultrasonographers and BMNet, a model trained exclusively on histopathological findings indicating benign or malignant nature. The study included 3,545 patients with pathologically confirmed C-TIRADS category 4 thyroid nodules from two tertiary hospitals in China: Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine (n=3,463 patients) and Jiangyin People's Hospital (n=82 patients). The cohort from Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine was randomly divided into a training set and validation set (7:3 ratio), while the cohort from Jiangyin People's Hospital served as the external validation set. The C-TNet model was developed by extracting image features from the training set and integrating them with six commonly used classifier algorithms: logistic regression (LR), linear discriminant analysis (LDA), random forest (RF), kernel support vector machine (K-SVM), adaptive boosting (AdaBoost), and Naive Bayes (NB). Its performance was evaluated using both internal and external validation sets, with statistical differences analyzed through the Chi-squared test. C-TNet model effectively integrates feature extraction from deep neural networks with a RF classifier, utilizing grayscale and elastography ultrasound data. It successfully differentiates benign from malignant thyroid nodules, achieving an area under the curve (AUC) of 0.873, comparable to the performance of senior physicians (AUC: 0.868). The model demonstrates generalizability across diverse clinical settings, positioning itself as a transformative decision-support tool for enhancing the risk stratification of thyroid nodules.

Application of deep learning for detection of nasal bone fracture on X-ray nasal bone lateral view.

Mortezaei T, Dalili Kajan Z, Mirroshandel SA, Mehrpour M, Shahidzadeh S

pubmed logopapersSep 1 2025
This study aimed to assess the efficacy of deep learning applications for the detection of nasal bone fracture on X-ray nasal bone lateral view. In this retrospective observational study, 2968 X-ray nasal bone lateral views of trauma patients were collected from a radiology centre, and randomly divided into training, validation, and test sets. Preprocessing included noise reduction by using the Gaussian filter and image resizing. Edge detection was performed using the Canny edge detector. Feature extraction was conducted using the gray-level co-occurrence matrix (GLCM), histogram of oriented gradients (HOG), and local binary pattern (LBP) techniques. Several machine learning algorithms namely CNN, VGG16, VGG19, MobileNet, Xception, ResNet50V2, and InceptionV3 were employed for the classification of images into 2 classes of normal and fracture. The accuracy was the highest for VGG16 and Swin Transformer (79%) followed by ResNet50V2 and InceptionV3 (0.74), Xception (0.72), and MobileNet (0.71). The AUC was the highest for VGG16 (0.86) followed by VGG19 (0.84), MobileNet and Xception (0.83), and Swin Transformer (0.79). The tested deep learning models were capable of detecting nasal bone fractures on X-ray nasal bone lateral views with high accuracy. VGG16 was the best model with successful results.

Predicting perineural invasion of intrahepatic cholangiocarcinoma based on CT: a multicenter study.

Lin Y, Liu Z, Li J, Feng ST, Dong Z, Tang M, Song C, Peng Z, Cai H, Hu Q, Zou Y, Zhou X

pubmed logopapersSep 1 2025
This study explored the feasibility of preoperatively predicting perineural invasion (PNI) of intrahepatic cholangiocarcinoma (ICC) through machine learning based on clinical and CT image features, which may help in individualized clinical decision making and modification of further treatment strategies. This study enrolled 199 patients with histologically confirmed ICC from three institutions for final analysis. 111 patients from Institution I were recruited as the training cohort and internal validation cohort. Significant clinical and CT image features for predicting PNI were screened using the least absolute shrinkage and selection operator (LASSO) to construct machine learning models. 72 patients from Institutions II and III were recruited as two external validation cohorts, and 16 patients from Institution I were enrolled as a prospective cohort to assess model performance. Tumor location (perihilar), intrahepatic bile duct dilatation, and arterial enhancement pattern were selected using LASSO for model construction. Machine learning models were developed based on these three features using five algorithms: multilayer perceptron, random forest, support vector machine, logistic regression, and XGBoost. The AUCs of the models exceeded 0.86, 0.84, 0.79, and 0.72 in the training cohort, internal validation cohort, external validation cohorts, and prospective cohort, respectively. Machine learning models based on CT were accurate in predicting PNI of ICC, which may help in treatment decision making.

Challenges in diagnosis of sarcoidosis.

Bączek K, Piotrowski WJ, Bonella F

pubmed logopapersSep 1 2025
Diagnosing sarcoidosis remains challenging. Histology findings and a variable clinical presentation can mimic other infectious, malignant, and autoimmune diseases. This review synthesizes current evidence on histopathology, sampling techniques, imaging modalities, and biomarkers and explores how emerging 'omics' and artificial intelligence tools may sharpen diagnostic accuracy. Within the typical granulomatous lesions, limited or 'burned-out' necrosis is an ancillary finding, which can be present in up to one-third of sarcoid biopsies, and demands a careful differential diagnostic work-up. Endobronchial ultrasound-guided transbronchial needle aspiration of lymph nodes has replaced mediastinoscopy as first-line sampling tool, while cryobiopsy is still under validation. Volumetric PET metrics such as total lung glycolysis and somatostatin-receptor tracers refine activity assessment; combined FDG PET/MRI improves detection of occult cardiac disease. Advanced bronchoalveolar lavage (BAL) immunophenotyping via flow cytometry and serum, BAL, and genetic biomarkers show to correlate with inflammatory burden but have low diagnostic value. Multi-omics signatures and Positron Emission Tomography with Computer Tomography radiomics, supported by deep-learning algorithms, show promising results for noninvasive diagnostic confirmation, phenotyping, and disease monitoring. No single test is conclusive for diagnosing sarcoidosis. An integrated, multidisciplinary strategy is needed. Large, multicenter, and multiethnic studies are essential to translate and validate data from emerging AI tools and -omics research into clinical routine.

TFKT V2: task-focused knowledge transfer from natural images for computed tomography perceptual image quality assessment.

Rifa KR, Ahamed MA, Zhang J, Imran A

pubmed logopapersSep 1 2025
The accurate assessment of computed tomography (CT) image quality is crucial for ensuring diagnostic reliability while minimizing radiation dose. Radiologists' evaluations are time-consuming and labor-intensive. Existing automated approaches often require large CT datasets with predefined image quality assessment (IQA) scores, which often do not align well with clinical evaluations. We aim to develop a reference-free, automated method for CT IQA that closely reflects radiologists' evaluations, reducing the dependency on large annotated datasets. We propose Task-Focused Knowledge Transfer (TFKT), a deep learning-based IQA method leveraging knowledge transfer from task-similar natural image datasets. TFKT incorporates a hybrid convolutional neural network-transformer model, enabling accurate quality predictions by learning from natural image distortions with human-annotated mean opinion scores. The model is pre-trained on natural image datasets and fine-tuned on low-dose computed tomography perceptual image quality assessment data to ensure task-specific adaptability. Extensive evaluations demonstrate that the proposed TFKT method effectively predicts IQA scores aligned with radiologists' assessments on in-domain datasets and generalizes well to out-of-domain clinical pediatric CT exams. The model achieves robust performance without requiring high-dose reference images. Our model is capable of assessing the quality of <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>∼</mo> <mn>30</mn></mrow> </math> CT image slices in a second. The proposed TFKT approach provides a scalable, accurate, and reference-free solution for CT IQA. The model bridges the gap between traditional and deep learning-based IQA, offering clinically relevant and computationally efficient assessments applicable to real-world clinical settings.

Temporal Representation Learning for Real-Time Ultrasound Analysis

Yves Stebler, Thomas M. Sutter, Ece Ozkan, Julia E. Vogt

arxiv logopreprintSep 1 2025
Ultrasound (US) imaging is a critical tool in medical diagnostics, offering real-time visualization of physiological processes. One of its major advantages is its ability to capture temporal dynamics, which is essential for assessing motion patterns in applications such as cardiac monitoring, fetal development, and vascular imaging. Despite its importance, current deep learning models often overlook the temporal continuity of ultrasound sequences, analyzing frames independently and missing key temporal dependencies. To address this gap, we propose a method for learning effective temporal representations from ultrasound videos, with a focus on echocardiography-based ejection fraction (EF) estimation. EF prediction serves as an ideal case study to demonstrate the necessity of temporal learning, as it requires capturing the rhythmic contraction and relaxation of the heart. Our approach leverages temporally consistent masking and contrastive learning to enforce temporal coherence across video frames, enhancing the model's ability to represent motion patterns. Evaluated on the EchoNet-Dynamic dataset, our method achieves a substantial improvement in EF prediction accuracy, highlighting the importance of temporally-aware representation learning for real-time ultrasound analysis.

Multi-Modal Machine Learning Framework for Predicting Early Recurrence of Brain Tumors Using MRI and Clinical Biomarkers

Cheng Cheng, Zeping Chen, Rui Xie, Peiyao Zheng, Xavier Wang

arxiv logopreprintSep 1 2025
Accurately predicting early recurrence in brain tumor patients following surgical resection remains a clinical challenge. This study proposes a multi-modal machine learning framework that integrates structural MRI features with clinical biomarkers to improve postoperative recurrence prediction. We employ four machine learning algorithms -- Gradient Boosting Machine (GBM), Random Survival Forest (RSF), CoxBoost, and XGBoost -- and validate model performance using concordance index (C-index), time-dependent AUC, calibration curves, and decision curve analysis. Our model demonstrates promising performance, offering a potential tool for risk stratification and personalized follow-up planning.

Deep Learning-Based Multimodal Prediction of NAC Response in LARC by Integrating MRI and Proteomics.

Li Y, Ding J, Du F, Wang Z, Liu Z, Liu Y, Zhou Y, Zhang Q

pubmed logopapersSep 1 2025
Locally advanced rectal cancer (LARC) exhibits significant heterogeneity in response to neoadjuvant chemotherapy (NAC), with poor responders facing delayed treatment and unnecessary toxicity. Although MRI provides spatial pathophysiological information and proteomics reveals molecular mechanisms, current single-modal approaches cannot integrate these complementary perspectives, resulting in limited predictive accuracy and biological insight. This retrospective study developed a multimodal deep learning framework using a cohort of 274 LARC patients treated with NAC (2012-2021). Graph neural networks analyzed proteomic profiles from FFPE tissues, incorporating KEGG/GO pathways and PPI networks, while a spatially enhanced 3D ResNet152 processed T2WI. A LightGBM classifier integrated both modalities with clinical features using zero-imputation for missing data. Model performance was assessed through AUC-ROC, decision curve analysis, and interpretability techniques (SHAP and Grad-CAM). The integrated model achieved superior NAC response prediction (test AUC 0.828, sensitivity 0.875, specificity 0.750), significantly outperforming single-modal approaches (MRI ΔAUC +0.109; proteomics ΔAUC +0.125). SHAP analysis revealed MRI-derived features contributed 57.7% of predictive power, primarily through peritumoral stromal heterogeneity quantification. Proteomics identified 10 key chemoresistance proteins, including CYBA, GUSB, ATP6AP2, DYNC1I2, DAD1, ACOX1, COPG1, FBP1, DHRS7, and SSR3. Decision curve analysis confirmed clinical utility across threshold probabilities (0-0.75). Our study established a novel MRI-proteomics integration framework for NAC response prediction, with MRI defining spatial resistance patterns and proteomics deciphering molecular drivers, enabling early organ preservation strategies. The zero-imputation design ensured deplorability in diverse clinical settings.

Identifying Pathogenesis of Acute Coronary Syndromes using Sequence Contrastive Learning in Coronary Angiography.

Ma X, Shibata Y, Kurihara O, Kobayashi N, Takano M, Kurihara T

pubmed logopapersSep 1 2025
Advances in intracoronary imaging have made it possible to distinguish different pathological mechanisms underlying acute coronary syndrome (ACS) in vivo. Accurate identification of these mechanisms is increasingly recognized as essential for enabling tailored therapeutic strategies. ACS pathogenesis is primarily classified into 2 major types: plaque rupture (PR) and plaque erosion (PE). Patients with PR are treated with intracoronary stenting, whereas those with PE may be potentially managed conservatively without stenting. The aim of this study is to develop neural networks capable of distinguishing PR from PE solely using coronary angiography (CAG). A total of 842 videos from 278 ACS patients (PR:172, PE:106) were included. To ensure the reliability of the ground truth for PR/PE classification, the ACS pathogenesis for each patient was confirmed using Optical Coherence Tomography (OCT). To enhance the learning of discriminative features across consecutive frames and improve PR/PE classification performance, we propose Sequence Contrastive Learning (SeqCon), which addresses the limitations inherent in conventional contrastive learning approaches. In the experiments, the external test set consisted of 18 PR patients (46 videos) and 11 PE patients (30 videos). SeqCon achieved an accuracy of 82.8%, sensitivity of 88.9%, specificity of 72.3%, positive predictive value of 84.2%, and negative predictive value of 80.0% at the patient-level. This is the first report to use contrastive learning for diagnosing the underlying mechanism of ACS by CAG. We demonstrated that it can be feasible to distinguish between PR and PE without intracoronary imaging modalities.

Combining curriculum learning and weakly supervised attention for enhanced thyroid nodule assessment in ultrasound imaging.

Keatmanee C, Songsaeng D, Klabwong S, Nakaguro Y, Kunapinun A, Ekpanyapong M, Dailey MN

pubmed logopapersSep 1 2025
The accurate assessment of thyroid nodules, which are increasingly common with age and lifestyle factors, is essential for early malignancy detection. Ultrasound imaging, the primary diagnostic tool for this purpose, holds promise when paired with deep learning. However, challenges persist with small datasets, where conventional data augmentation can introduce noise and obscure essential diagnostic features. To address dataset imbalance and enhance model generalization, this study integrates curriculum learning with a weakly supervised attention network to improve diagnostic accuracy for thyroid nodule classification. This study integrates curriculum learning with attention-guided data augmentation to improve deep learning model performance in classifying thyroid nodules. Using verified datasets from Siriraj Hospital, the model was trained progressively, beginning with simpler images and gradually incorporating more complex cases. This structured learning approach is designed to enhance the model's diagnostic accuracy by refining its ability to distinguish benign from malignant nodules. Among the curriculum learning schemes tested, schematic IV achieved the best results, with a precision of 100% for benign and 70% for malignant nodules, a recall of 82% for benign and 100% for malignant, and F1-scores of 90% and 83%, respectively. This structured approach improved the model's diagnostic sensitivity and robustness. These findings suggest that automated thyroid nodule assessment, supported by curriculum learning, has the potential to complement radiologists in clinical practice, enhancing diagnostic accuracy and aiding in more reliable malignancy detection.
Page 46 of 2352345 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.