Sort by:
Page 41 of 100995 results

Benchmarking of Deep Learning Methods for Generic MRI Multi-Organ Abdominal Segmentation

Deepa Krishnaswamy, Cosmin Ciausu, Steve Pieper, Ron Kikinis, Benjamin Billot, Andrey Fedorov

arxiv logopreprintJul 23 2025
Recent advances in deep learning have led to robust automated tools for segmentation of abdominal computed tomography (CT). Meanwhile, segmentation of magnetic resonance imaging (MRI) is substantially more challenging due to the inherent signal variability and the increased effort required for annotating training datasets. Hence, existing approaches are trained on limited sets of MRI sequences, which might limit their generalizability. To characterize the landscape of MRI abdominal segmentation tools, we present here a comprehensive benchmarking of the three state-of-the-art and open-source models: MRSegmentator, MRISegmentator-Abdomen, and TotalSegmentator MRI. Since these models are trained using labor-intensive manual annotation cycles, we also introduce and evaluate ABDSynth, a SynthSeg-based model purely trained on widely available CT segmentations (no real images). More generally, we assess accuracy and generalizability by leveraging three public datasets (not seen by any of the evaluated methods during their training), which span all major manufacturers, five MRI sequences, as well as a variety of subject conditions, voxel resolutions, and fields-of-view. Our results reveal that MRSegmentator achieves the best performance and is most generalizable. In contrast, ABDSynth yields slightly less accurate results, but its relaxed requirements in training data make it an alternative when the annotation budget is limited. The evaluation code and datasets are given for future benchmarking at https://github.com/deepakri201/AbdoBench, along with inference code and weights for ABDSynth.

CT-based intratumoral and peritumoral radiomics to predict the treatment response to hepatic arterial infusion chemotherapy plus lenvatinib and PD-1 in high-risk hepatocellular carcinoma cases: a multi-center study.

Liu Z, Li X, Huang Y, Chang X, Zhang H, Wu X, Diao Y, He F, Sun J, Feng B, Liang H

pubmed logopapersJul 23 2025
Noninvasive and precise tools for treatment response estimation in patients with high-risk hepatocellular carcinoma (HCC) who could benefit from hepatic arterial infusion chemotherapy (HAIC) plus lenvatinib and humanized programmed death receptor-1 inhibitors (PD-1) (HAIC-LEN-PD1) are lacking. This study aimed to evaluate the predictive potential of intratumoral and peritumoral radiomics for preoperative treatment response assessment to HAIC-LEN-PD1 in high-risk HCC cases. Totally 630 high-risk HCC cases administered HAIC-LEN-PD1 at three institutions were retrospectively identified and assigned to training, validation and external test sets. Totally 1834 radiomic features were, respectively, obtained from intratumoral and peritumoral regions and radiomics models were established using five classifiers. Based on the optimal model, a nomogram was developed and evaluated using areas under the curves (AUCs), calibration curves and decision curve analysis (DCA). Overall survival (OS) and progression-free survival (PFS) were assessed by Kaplan-Meier curves. The Intratumoral + Peritumoral 10 mm (Intra + Peri10) radiomics models were superior to the intratumor models and peritumor models, with AUCs of 0.919 (95%CI 0.889-0.949) in the training set, 0.874 (95%CI 0.812-0.936) in validation set and 0.893 (95%CI 0.839-0.948) in external test sets. The nomogram had good calibration ability and clinical value, with the AUCs of 0.936 (95%CI 0.907-0.965) in the training set, 0.878 (95%CI 0.916-0.940) in validation set and 0.902 (95%CI 0.848-0.957) in external test sets. The Kaplan-Meier analysis showed that high-score patients had significantly shorter OS and PFS than the low-score patients (median OS: 11.7 vs. 29.6 months, the whole set, p < 0.001; median PFS: 6.0 vs. 12.0 months, the whole set, p < 0.001). The Intra + Peri10 model can effectively predict the treatment response of high-risk HCC cases administered HAIC-LEN-PD1. The nomogram could provide an effective tool to evaluate the treatment response and risk stratification.

Preoperative MRI-based radiomics analysis of intra- and peritumoral regions for predicting CD3 expression in early cervical cancer.

Zhang R, Jiang C, Li F, Li L, Qin X, Yang J, Lv H, Ai T, Deng L, Huang C, Xing H, Wu F

pubmed logopapersJul 23 2025
The study investigates the correlation between CD3 T-cell expression levels and cervical cancer (CC) while developing a magnetic resonance (MR) imaging-based radiomics model for preoperative prediction of CD3 T-cell expression levels. Prognostic correlations between CD3D, CD3E, and CD3G gene expressions and various cancers were analyzed using the Cancer Genome Atlas (TCGA) database. Protein-protein interaction (PPI) analysis via the STRING database identified associations between these genes and T lymphocyte activity. Gene Set Enrichment Analysis (GSEA) revealed immune pathway enrichment by categorizing genes based on CD3D expression levels. Correlations between immune checkpoint molecules and CD3 complex genes were also assessed. The study retrospectively included 202 patients with pathologically confirmed early-stage CC who underwent preoperative MRI, divided into training and test groups. Radiomic features were extracted from the whole-lesion tumor region of interest (ROI<sub>tumor</sub>) and from peritumoral regions with 3 mm and 5 mm margins (ROI<sub>3mm</sub> and ROI<sub>5mm</sub>, respectively). Various machine learning algorithms, including Support Vector Machine (SVM), Logistic Regression, Random Forest, AdaBoost, and Decision Tree, were used to construct radiomics models based on different ROIs, and diagnostic performances were compared to identify the optimal approach. The best-performing algorithm was combined with intra- and peritumoral features and clinically relevant independent risk factors to develop a comprehensive predictive model. Analysis of the TCGA database demonstrated significant associations between CD3D, CD3E, and CD3G expressions and several cancers, including CC (p < 0.05). PPI analysis highlighted connections between these genes and T lymphocyte function, while GSEA indicated enrichment of immune-related pathways linked to CD3D. Immune checkpoint correlations showed positive associations with CD3 complex genes. Radiomics analysis selected 18 features from ROI<sub>tumor</sub> and ROI<sub>3mm</sub> across MRI sequences. The SVM algorithm achieved the highest predictive performance for CD3 T-cell expression status, with an area under the curve (AUC) of 0.93 in the training group and 0.92 in the test group. This MR-based radiomics model effectively predicts CD3 expression status in patients with early-stage CC, offering a non-invasive tool for preoperative assessment of CD3 expression, but its clinical utility needs further prospective validation.

Synthetic data trained open-source language models are feasible alternatives to proprietary models for radiology reporting.

Pandita A, Keniston A, Madhuripan N

pubmed logopapersJul 23 2025
The study assessed the feasibility of using synthetic data to fine-tune various open-source LLMs for free text to structured data conversation in radiology, comparing their performance with GPT models. A training set of 3000 synthetic thyroid nodule dictations was generated to train six open-source models (Starcoderbase-1B, Starcoderbase-3B, Mistral-7B, Llama-3-8B, Llama-2-13B, and Yi-34B). ACR TI-RADS template was the target model output. The model performance was tested on 50 thyroid nodule dictations from MIMIC-III patient dataset and compared against 0-shot, 1-shot, and 5-shot performance of GPT-3.5 and GPT-4. GPT-4 5-shot and Yi-34B showed the highest performance with no statistically significant difference between the models. Various open models outperformed GPT models with statistical significance. Overall, models trained with synthetic data showed performance comparable to GPT models in structured text conversion in our study. Given privacy preserving advantages, open LLMs can be utilized as a viable alternative to proprietary GPT models.

Benchmarking of Deep Learning Methods for Generic MRI Multi-OrganAbdominal Segmentation

Deepa Krishnaswamy, Cosmin Ciausu, Steve Pieper, Ron Kikinis, Benjamin Billot, Andrey Fedorov

arxiv logopreprintJul 23 2025
Recent advances in deep learning have led to robust automated tools for segmentation of abdominal computed tomography (CT). Meanwhile, segmentation of magnetic resonance imaging (MRI) is substantially more challenging due to the inherent signal variability and the increased effort required for annotating training datasets. Hence, existing approaches are trained on limited sets of MRI sequences, which might limit their generalizability. To characterize the landscape of MRI abdominal segmentation tools, we present here a comprehensive benchmarking of the three state-of-the-art and open-source models: MRSegmentator, MRISegmentator-Abdomen, and TotalSegmentator MRI. Since these models are trained using labor-intensive manual annotation cycles, we also introduce and evaluate ABDSynth, a SynthSeg-based model purely trained on widely available CT segmentations (no real images). More generally, we assess accuracy and generalizability by leveraging three public datasets (not seen by any of the evaluated methods during their training), which span all major manufacturers, five MRI sequences, as well as a variety of subject conditions, voxel resolutions, and fields-of-view. Our results reveal that MRSegmentator achieves the best performance and is most generalizable. In contrast, ABDSynth yields slightly less accurate results, but its relaxed requirements in training data make it an alternative when the annotation budget is limited. The evaluation code and datasets are given for future benchmarking at https://github.com/deepakri201/AbdoBench, along with inference code and weights for ABDSynth.

Development of a deep learning model for T1N0 gastric cancer diagnosis using 2.5D radiomic data in preoperative CT images.

He J, Xu J, Chen W, Cao M, Zhang J, Yang Q, Li E, Zhang R, Tong Y, Zhang Y, Gao C, Zhao Q, Xu Z, Wang L, Cheng X, Zheng G, Pan S, Hu C

pubmed logopapersJul 23 2025
Early detection and precise preoperative staging of early gastric cancer (EGC) are critical. Therefore, this study aims to develop a deep learning model using portal venous phase CT images to accurately distinguish EGC without lymph node metastasis. This study included 3164 patients with gastric cancer (GC) who underwent radical surgery at two medical centers in China from 2006 to 2019. Moreover, 2.5D radiomic data and multi-instance learning (MIL) were novel approaches applied in this study. By basing the selection of features on 2.5D radiomic data and MIL, the ResNet101 model combined with the XGBoost model represented a satisfactory performance for diagnosing pT1N0 GC. Furthermore, the 2.5D MIL-based model demonstrated a markedly superior predictive performance compared to traditional radiomics models and clinical models. We first constructed a deep learning prediction model based on 2.5D radiomics and MIL for effectively diagnosing pT1N0 GC patients, which provides valuable information for the individualized treatment selection.

Deep Learning-Based Prediction of Microvascular Invasion and Survival Outcomes in Hepatocellular Carcinoma Using Dual-phase CT Imaging of Tumors and Lesser Omental Adipose: A Multicenter Study.

Miao S, Sun M, Li X, Wang M, Jiang Y, Liu Z, Wang Q, Ding X, Wang R

pubmed logopapersJul 23 2025
Accurate preoperative prediction of microvascular invasion (MVI) in hepatocellular carcinoma (HCC) remains challenging. Current imaging biomarkers show limited predictive performance. To develop a deep learning model based on preoperative multiphase CT images of tumors and lesser omental adipose tissue (LOAT) for predicting MVI status and to analyze associated survival outcomes. This retrospective study included pathologically confirmed HCC patients from two medical centers between 2016 and 2023. A dual-branch feature fusion model based on ResNet18 was constructed, which extracted fused features from dual-phase CT images of both tumors and LOAT. The model's performance was evaluated on both internal and external test sets. Logistic regression was used to identify independent predictors of MVI. Based on MVI status, patients in the training, internal test, and external test cohorts were stratified into high- and low-risk groups, and overall survival differences were analyzed. The model incorporating LOAT features outperformed the tumor-only modality, achieving an AUC of 0.889 (95% CI: [0.882, 0.962], P=0.004) in the internal test set and 0.826 (95% CI: [0.793, 0.872], P=0.006) in the external test set. Both results surpassed the independent diagnoses of three radiologists (average AUC=0.772). Multivariate logistic regression confirmed that maximum tumor diameter and LOAT area were independent predictors of MVI. Further Cox regression analysis showed that MVI-positive patients had significantly increased mortality risks in both the internal test set (Hazard Ratio [HR]=2.246, 95% CI: [1.088, 4.637], P=0.029) and external test set (HR=3.797, 95% CI: [1.262, 11.422], P=0.018). This study is the first to use a deep learning framework integrating LOAT and tumor imaging features, improving preoperative MVI risk stratification accuracy. Independent prognostic value of LOAT has been validated in multicenter cohorts, highlighting its potential to guide personalized surgical planning.

DualSwinUnet++: An enhanced Swin-Unet architecture with dual decoders for PTMC segmentation.

Dialameh M, Rajabzadeh H, Sadeghi-Goughari M, Sim JS, Kwon HJ

pubmed logopapersJul 22 2025
Precise segmentation of papillary thyroid microcarcinoma (PTMC) during ultrasound-guided radiofrequency ablation (RFA) is critical for effective treatment but remains challenging due to acoustic artifacts, small lesion size, and anatomical variability. In this study, we propose DualSwinUnet++, a dual-decoder transformer-based architecture designed to enhance PTMC segmentation by incorporating thyroid gland context. DualSwinUnet++ employs independent linear projection heads for each decoder and a residual information flow mechanism that passes intermediate features from the first (thyroid) decoder to the second (PTMC) decoder via concatenation and transformation. These design choices allow the model to condition tumor prediction explicitly on gland morphology without shared gradient interference. Trained on a clinical ultrasound dataset with 691 annotated RFA images and evaluated against state-of-the-art models, DualSwinUnet++ achieves superior Dice and Jaccard scores while maintaining sub-200ms inference latency. The results demonstrate the model's suitability for near real-time surgical assistance and its effectiveness in improving segmentation accuracy in challenging PTMC cases.

MAN-GAN: a mask-adaptive normalization based generative adversarial networks for liver multi-phase CT image generation.

Zhao W, Chen W, Fan L, Shang Y, Wang Y, Situ W, Li W, Liu T, Yuan Y, Liu J

pubmed logopapersJul 22 2025
Liver multiphase enhanced computed tomography (MPECT) is vital in clinical practice, but its utility is limited by various factors. We aimed to develop a deep learning network capable of automatically generating MPECT images from standard non-contrast CT scans. Dataset 1 included 374 patients and was divided into three parts: a training set, a validation set and a test set. Dataset 2 included 144 patients with one specific liver disease and was used as an internal test dataset. We further collected another dataset comprising 83 patients for external validation. Then, we propose a Mask-Adaptive Normalization-based Generative Adversarial Network with Cycle-Consistency Loss (MAN-GAN) to achieve non-contrast CT to MPECT translation. To assess the efficiency of MAN-GAN, we conducted a comparative analysis with state-of-the-art methods commonly employed in diverse medical image synthesis tasks. Moreover, two subjective radiologist evaluation studies were performed to verify the clinical usefulness of the generated images. MAN-GAN outperformed the baseline network and other state-of-the-art methods in all generations of the three phases. These results were verified in internal and external datasets. According to radiological evaluation, the image quality of generated three phase images are all above average. Moreover, the similarities between real images and generated images in all three phases are satisfactory. MAN-GAN demonstrates the feasibility of liver MPECT image translation based on non-contrast images and achieves state-of-the-art performance via the subtraction strategy. It has great potential for solving the dilemma of liver CT contrast canning and aiding further liver interaction clinical scenarios.

A Study of Anatomical Priors for Deep Learning-Based Segmentation of Pheochromocytoma in Abdominal CT

Tanjin Taher Toma, Tejas Sudharshan Mathai, Bikash Santra, Pritam Mukherjee, Jianfei Liu, Wesley Jong, Darwish Alabyad, Vivek Batheja, Abhishek Jha, Mayank Patel, Darko Pucar, Jayadira del Rivero, Karel Pacak, Ronald M. Summers

arxiv logopreprintJul 21 2025
Accurate segmentation of pheochromocytoma (PCC) in abdominal CT scans is essential for tumor burden estimation, prognosis, and treatment planning. It may also help infer genetic clusters, reducing reliance on expensive testing. This study systematically evaluates anatomical priors to identify configurations that improve deep learning-based PCC segmentation. We employed the nnU-Net framework to evaluate eleven annotation strategies for accurate 3D segmentation of pheochromocytoma, introducing a set of novel multi-class schemes based on organ-specific anatomical priors. These priors were derived from adjacent organs commonly surrounding adrenal tumors (e.g., liver, spleen, kidney, aorta, adrenal gland, and pancreas), and were compared against a broad body-region prior used in previous work. The framework was trained and tested on 105 contrast-enhanced CT scans from 91 patients at the NIH Clinical Center. Performance was measured using Dice Similarity Coefficient (DSC), Normalized Surface Distance (NSD), and instance-wise F1 score. Among all strategies, the Tumor + Kidney + Aorta (TKA) annotation achieved the highest segmentation accuracy, significantly outperforming the previously used Tumor + Body (TB) annotation across DSC (p = 0.0097), NSD (p = 0.0110), and F1 score (25.84% improvement at an IoU threshold of 0.5), measured on a 70-30 train-test split. The TKA model also showed superior tumor burden quantification (R^2 = 0.968) and strong segmentation across all genetic subtypes. In five-fold cross-validation, TKA consistently outperformed TB across IoU thresholds (0.1 to 0.5), reinforcing its robustness and generalizability. These findings highlight the value of incorporating relevant anatomical context into deep learning models to achieve precise PCC segmentation, offering a valuable tool to support clinical assessment and longitudinal disease monitoring in PCC patients.
Page 41 of 100995 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.