Sort by:
Page 40 of 1411405 results

MobileTurkerNeXt: investigating the detection of Bankart and SLAP lesions using magnetic resonance images.

Gurger M, Esmez O, Key S, Hafeez-Baig A, Dogan S, Tuncer T

pubmed logopapersJun 2 2025
The landscape of computer vision is predominantly shaped by two groundbreaking methodologies: transformers and convolutional neural networks (CNNs). In this study, we aim to introduce an innovative mobile CNN architecture designed for orthopedic imaging that efficiently identifies both Bankart and SLAP lesions. Our approach involved the collection of two distinct magnetic resonance (MR) image datasets, with the primary goal of automating the detection of Bankart and SLAP lesions. A novel mobile CNN, dubbed MobileTurkerNeXt, forms the cornerstone of this research. This newly developed model, comprising roughly 1 million trainable parameters, unfolds across four principal stages: the stem, main, downsampling, and output phases. The stem phase incorporates three convolutional layers to initiate feature extraction. In the main phase, we introduce an innovative block, drawing inspiration from ConvNeXt, EfficientNet, and ResNet architectures. The downsampling phase utilizes patchify average pooling and pixel-wise convolution to effectively reduce spatial dimensions, while the output phase is meticulously engineered to yield classification outcomes. Our experimentation with MobileTurkerNeXt spanned three comparative scenarios: Bankart versus normal, SLAP versus normal, and a tripartite comparison of Bankart, SLAP, and normal cases. The model demonstrated exemplary performance, achieving test classification accuracies exceeding 96% across these scenarios. The empirical results underscore the MobileTurkerNeXt's superior classification process in differentiating among Bankart, SLAP, and normal conditions in orthopedic imaging. This underscores the potential of our proposed mobile CNN in advancing diagnostic capabilities and contributing significantly to the field of medical image analysis.

Robust Detection of Out-of-Distribution Shifts in Chest X-ray Imaging.

Karimi F, Farnia F, Bae KT

pubmed logopapersJun 2 2025
This study addresses the critical challenge of detecting out-of-distribution (OOD) chest X-rays, where subtle view differences between lateral and frontal radiographs can lead to diagnostic errors. We develop a GAN-based framework that learns the inherent feature distribution of frontal views from the MIMIC-CXR dataset through latent space optimization and Kolmogorov-Smirnov statistical testing. Our approach generates similarity scores to reliably identify OOD cases, achieving exceptional performance with 100% precision, and 97.5% accuracy in detecting lateral views. The method demonstrates consistent reliability across operating conditions, maintaining accuracy above 92.5% and precision exceeding 93% under varying detection thresholds. These results provide both theoretical insights and practical solutions for OOD detection in medical imaging, demonstrating how GANs can establish feature representations for identifying distributional shifts. By significantly improving model reliability when encountering view-based anomalies, our framework enhances the clinical applicability of deep learning systems, ultimately contributing to improved diagnostic safety and patient outcomes.

Implicit neural representation for medical image reconstruction.

Zhu Y, Liu Y, Zhang Y, Liang D

pubmed logopapersJun 2 2025
Medical image reconstruction aims to generate high-quality images from sparsely sampled raw sensor data, which poses an ill-posed inverse problem. Traditional iterative reconstruction methods rely on prior information to empirically construct regularization terms, a process that is not trivial. While deep learning (DL)-based supervised reconstruction has made significant progress in improving image quality, it requires large-scale training data, which is difficult to obtain in medical imaging. Recently, implicit neural representation (INR) has emerged as a promising approach, offering a flexible and continuous representation of images by modeling the underlying signal as a function of spatial coordinates. This allows INR to capture fine details and complex structures more effectively than conventional discrete methods. This paper provides a comprehensive review of INR-based medical image reconstruction techniques, highlighting its growing impact on the field. The benefits of INR in both image and measurement domains are presented, and its advantages, limitations, and future research directions are discussed.&#xD.

Multicycle Dosimetric Behavior and Dose-Effect Relationships in [<sup>177</sup>Lu]Lu-DOTATATE Peptide Receptor Radionuclide Therapy.

Kayal G, Roseland ME, Wang C, Fitzpatrick K, Mirando D, Suresh K, Wong KK, Dewaraja YK

pubmed logopapersJun 2 2025
We investigated pharmacokinetics, dosimetric patterns, and absorbed dose (AD)-effect correlations in [<sup>177</sup>Lu]Lu-DOTATATE peptide receptor radionuclide therapy (PRRT) for metastatic neuroendocrine tumors (NETs) to develop strategies for future personalized dosimetry-guided treatments. <b>Methods:</b> Patients treated with standard [<sup>177</sup>Lu]Lu-DOTATATE PRRT were recruited for serial SPECT/CT imaging. Kidneys were segmented on CT using a deep learning algorithm, and tumors were segmented at each cycle using a SPECT gradient-based tool, guided by radiologist-defined contours on baseline CT/MRI. Dosimetry was performed using an automated workflow that included contour intensity-based SPECT-SPECT registration, generation of Monte Carlo dose-rate maps, and dose-rate fitting. Lesion-level response at first follow-up was evaluated using both radiologic (RECIST and modified RECIST) and [<sup>68</sup>Ga]Ga-DOTATATE PET-based criteria. Kidney toxicity was evaluated based on the estimated glomerular filtration rate (eGFR) at 9 mo after PRRT. <b>Results:</b> Dosimetry was performed after cycle 1 in 30 patients and after all cycles in 22 of 30 patients who completed SPECT/CT imaging after each cycle. Median cumulative tumor (<i>n</i> = 78) AD was 2.2 Gy/GBq (range, 0.1-20.8 Gy/GBq), whereas median kidney AD was 0.44 Gy/GBq (range, 0.25-0.96 Gy/GBq). The tumor-to-kidney AD ratio decreased with each cycle (median, 6.4, 5.7, 4.7, and 3.9 for cycles 1-4) because of a decrease in tumor AD, while kidney AD remained relatively constant. Higher-grade (grade 2) and pancreatic NETs showed a significantly larger drop in AD with each cycle, as well as significantly lower AD and effective half-life (T<sub>eff</sub>), than did low-grade (grade 1) and small intestinal NETs, respectively. T<sub>eff</sub> remained relatively constant with each cycle for both tumors and kidneys. Kidney T<sub>eff</sub> and AD were significantly higher in patients with low eGFR than in those with high eGFR. Tumor AD was not significantly associated with response measures. There was no nephrotoxicity higher than grade 2; however, a significant negative association was found in univariate analyses between eGFR at 9 mo and AD to the kidney, which improved in a multivariable model that also adjusted for baseline eGFR (cycle 1 AD, <i>P</i> = 0.020, adjusted <i>R</i> <sup>2</sup> = 0.57; cumulative AD, <i>P</i> = 0.049, adjusted <i>R</i> <sup>2</sup> = 0.65). The association between percentage change in eGFR and AD to the kidney was also significant in univariate analysis and after adjusting for baseline eGFR (cycle 1 AD, <i>P</i> = 0.006, adjusted <i>R</i> <sup>2</sup> = 0.21; cumulative AD, <i>P</i> = 0.019, adjusted <i>R</i> <sup>2</sup> = 0.21). <b>Conclusion:</b> The dosimetric behavior we report over different cycles and for different NET subgroups can be considered when optimizing PRRT to individual patients. The models we present for the relationship between eGFR and AD have potential for clinical use in predicting renal function early in the treatment course. Furthermore, reported pharmacokinetics for patient subgroups allow more appropriate selection of population parameters to be used in protocols with fewer imaging time points that facilitate more widespread adoption of dosimetry.

Current trends in glioma tumor segmentation: A survey of deep learning modules.

Shoushtari FK, Elahi R, Valizadeh G, Moodi F, Salari HM, Rad HS

pubmed logopapersJun 2 2025
Multiparametric Magnetic Resonance Imaging (mpMRI) is the gold standard for diagnosing brain tumors, especially gliomas, which are difficult to segment due to their heterogeneity and varied sub-regions. While manual segmentation is time-consuming and error-prone, Deep Learning (DL) automates the process with greater accuracy and speed. We conducted ablation studies on surveyed articles to evaluate the impact of "add-on" modules-addressing challenges like spatial information loss, class imbalance, and overfitting-on glioma segmentation performance. Advanced modules-such as atrous (dilated) convolutions, inception, attention, transformer, and hybrid modules-significantly enhance segmentation accuracy, efficiency, multiscale feature extraction, and boundary delineation, while lightweight modules reduce computational complexity. Experiments on the Brain Tumor Segmentation (BraTS) dataset (comprising low- and high-grade gliomas) confirm their robustness, with top-performing models achieving high Dice score for tumor sub-regions. This survey underscores the need for optimal module selection and placement to balance speed, accuracy, and interpretability in glioma segmentation. Future work should focus on improving model interpretability, lowering computational costs, and boosting generalizability. Tools like NeuroQuant® and Raidionics demonstrate potential for clinical translation. Further refinement could enable regulatory approval, advancing precision in brain tumor diagnosis and treatment planning.

Direct parametric reconstruction in dynamic PET using deep image prior and a novel parameter magnification strategy.

Hong X, Wang F, Sun H, Arabi H, Lu L

pubmed logopapersJun 2 2025
Multiple parametric imaging in positron emission tomography (PET) is challenging due to the noisy dynamic data and the complex mapping to kinetic parameters. Although methods like direct parametric reconstruction have been proposed to improve the image quality, limitations persist, particularly for nonlinear and small-value micro-parameters (e.g., k<sub>2</sub>, k<sub>3</sub>). This study presents a novel unsupervised deep learning approach to reconstruct and improve the quality of these micro-parameters. We proposed a direct parametric image reconstruction model, DIP-PM, integrating deep image prior (DIP) with a parameter magnification (PM) strategy. The model employs a U-Net generator to predict multiple parametric images using a CT image prior, with each output channel subsequently magnified by a factor to adjust the intensity. The model was optimized with a log-likelihood loss computed between the measured projection data and forward projected data. Two tracer datasets were simulated for evaluation: <sup>82</sup>Rb data using the 1-tissue compartment (1 TC) model and <sup>18</sup>F-FDG data using the 2-tissue compartment (2 TC) model, with 10-fold magnification applied to the 1 TC k<sub>2</sub> and the 2 TC k<sub>3</sub>, respectively. DIP-PM was compared to the indirect method, direct algorithm (OTEM) and the DIP method without parameter magnification (DIP-only). Performance was assessed on phantom data using peak signal-to-noise ratio (PSNR), normalized root mean square error (NRMSE) and structural similarity index (SSIM), as well as on real <sup>18</sup>F-FDG scan from a male subject. For the 1 TC model, OTEM performed well in K<sub>1</sub> reconstruction, but both indirect and OTEM methods showed high noise and poor performance in k<sub>2</sub>. The DIP-only method suppressed noise in k<sub>2</sub>, but failed to reconstruct fine structures in the myocardium. DIP-PM outperformed other methods with well-preserved detailed structures, particularly in k<sub>2</sub>, achieving the best metrics (PSNR: 19.00, NRMSE: 0.3002, SSIM: 0.9289). For the 2 TC model, traditional methods exhibited high noise and blurred structures in estimating all nonlinear parameters (K<sub>1</sub>, k<sub>2</sub>, k<sub>3</sub>), while DIP-based methods significantly improved image quality. DIP-PM outperformed all methods in k<sub>3</sub> (PSNR: 21.89, NRMSE: 0.4054, SSIM: 0.8797), and consequently produced the most accurate 2 TC K<sub>i</sub> images (PSNR: 22.74, NRMSE: 0.4897, SSIM: 0.8391). On real FDG data, DIP-PM also showed evident advantages in estimating K<sub>1</sub>, k<sub>2</sub> and k<sub>3</sub> while preserving myocardial structures. The results underscore the efficacy of the DIP-based direct parametric imaging in generating and improving quality of PET parametric images. This study suggests that the proposed DIP-PM method with the parameter magnification strategy can enhance the fidelity of nonlinear micro-parameter images.

Efficiency and Quality of Generative AI-Assisted Radiograph Reporting.

Huang J, Wittbrodt MT, Teague CN, Karl E, Galal G, Thompson M, Chapa A, Chiu ML, Herynk B, Linchangco R, Serhal A, Heller JA, Abboud SF, Etemadi M

pubmed logopapersJun 2 2025
Diagnostic imaging interpretation involves distilling multimodal clinical information into text form, a task well-suited to augmentation by generative artificial intelligence (AI). However, to our knowledge, impacts of AI-based draft radiological reporting remain unstudied in clinical settings. To prospectively evaluate the association of radiologist use of a workflow-integrated generative model capable of providing draft radiological reports for plain radiographs across a tertiary health care system with documentation efficiency, the clinical accuracy and textual quality of final radiologist reports, and the model's potential for detecting unexpected, clinically significant pneumothorax. This prospective cohort study was conducted from November 15, 2023, to April 24, 2024, at a tertiary care academic health system. The association between use of the generative model and radiologist documentation efficiency was evaluated for radiographs documented with model assistance compared with a baseline set of radiographs without model use, matched by study type (chest or nonchest). Peer review was performed on model-assisted interpretations. Flagging of pneumothorax requiring intervention was performed on radiographs prospectively. The primary outcomes were association of use of the generative model with radiologist documentation efficiency, assessed by difference in documentation time with and without model use using a linear mixed-effects model; for peer review of model-assisted reports, the difference in Likert-scale ratings using a cumulative-link mixed model; and for flagging pneumothorax requiring intervention, sensitivity and specificity. A total of 23 960 radiographs (11 980 each with and without model use) were used to analyze documentation efficiency. Interpretations with model assistance (mean [SE], 159.8 [27.0] seconds) were faster than the baseline set of those without (mean [SE], 189.2 [36.2] seconds) (P = .02), representing a 15.5% documentation efficiency increase. Peer review of 800 studies showed no difference in clinical accuracy (χ2 = 0.68; P = .41) or textual quality (χ2 = 3.62; P = .06) between model-assisted interpretations and nonmodel interpretations. Moreover, the model flagged studies containing a clinically significant, unexpected pneumothorax with a sensitivity of 72.7% and specificity of 99.9% among 97 651 studies screened. In this prospective cohort study of clinical use of a generative model for draft radiological reporting, model use was associated with improved radiologist documentation efficiency while maintaining clinical quality and demonstrated potential to detect studies containing a pneumothorax requiring immediate intervention. This study suggests the potential for radiologist and generative AI collaboration to improve clinical care delivery.

Referenceless 4D Flow Cardiovascular Magnetic Resonance with deep learning.

Trenti C, Ylipää E, Ebbers T, Carlhäll CJ, Engvall J, Dyverfeldt P

pubmed logopapersJun 2 2025
Despite its potential to improve the assessment of cardiovascular diseases, 4D Flow CMR is hampered by long scan times. 4D Flow CMR is conventionally acquired with three motion encodings and one reference encoding, as the 3-dimensional velocity data are obtained by subtracting the phase of the reference from the phase of the motion encodings. In this study, we aim to use deep learning to predict the reference encoding from the three motion encodings for cardiovascular 4D Flow. A U-Net was trained with adversarial learning (U-Net<sub>ADV</sub>) and with a velocity frequency-weighted loss function (U-Net<sub>VEL</sub>) to predict the reference encoding from the three motion encodings obtained with a non-symmetric velocity-encoding scheme. Whole-heart 4D Flow datasets from 126 patients with different types of cardiomyopathies were retrospectively included. The models were trained on 113 patients with a 5-fold cross-validation, and tested on 13 patients. Flow volumes in the aorta and pulmonary artery, mean and maximum velocity, total and maximum turbulent kinetic energy at peak systole in the cardiac chambers and main vessels were assessed. 3-dimensional velocity data reconstructed with the reference encoding predicted by deep learning agreed well with the velocities obtained with the reference encoding acquired at the scanner for both models. U-Net<sub>ADV</sub> performed more consistently throughout the cardiac cycle and across the test subjects, while U-Net<sub>VEL</sub> performed better for systolic velocities. Comprehensively, the largest error for flow volumes, maximum and mean velocities was -6.031% for maximum velocities in the right ventricle for the U-Net<sub>ADV</sub>, and -6.92% for mean velocities in the right ventricle for U-Net<sub>VEL</sub>. For total turbulent kinetic energy, the highest errors were in the left ventricle (-77.17%) for the U-Net<sub>ADV</sub>, and in the right ventricle (24.96%) for the U-Net<sub>VEL</sub>, while for maximum turbulent kinetic energy were in the pulmonary artery for both models, with a value of -15.5% for U-Net<sub>ADV</sub> and 15.38% for the U-Net<sub>VEL</sub>. Deep learning-enabled referenceless 4D Flow CMR permits velocities and flow volumes quantification comparable to conventional 4D Flow. Omitting the reference encoding reduces the amount of acquired data by 25%, thus allowing shorter scan times or improved resolution, which is valuable for utilization in the clinical routine.

Validation of a Dynamic Risk Prediction Model Incorporating Prior Mammograms in a Diverse Population.

Jiang S, Bennett DL, Colditz GA

pubmed logopapersJun 2 2025
For breast cancer risk prediction to be clinically useful, it must be accurate and applicable to diverse groups of women across multiple settings. To examine whether a dynamic risk prediction model incorporating prior mammograms, previously validated in Black and White women, could predict future risk of breast cancer across a racially and ethnically diverse population in a population-based screening program. This prognostic study included women aged 40 to 74 years with 1 or more screening mammograms drawn from the British Columbia Breast Screening Program from January 1, 2013, to December 31, 2019, with follow-up via linkage to the British Columbia Cancer Registry through June 2023. This provincial, organized screening program offers screening mammography with full field digital mammography (FFDM) every 2 years. Data were analyzed from May to August 2024. FFDM-based, artificial intelligence-generated mammogram risk score (MRS), including up to 4 years of prior mammograms. The primary outcomes were 5-year risk of breast cancer (measured with the area under the receiver operating characteristic curve [AUROC]) and absolute risk of breast cancer calibrated to the US Surveillance, Epidemiology, and End Results incidence rates. Among 206 929 women (mean [SD] age, 56.1 [9.7] years; of 118 093 with data on race, there were 34 266 East Asian; 1946 Indigenous; 6116 South Asian; and 66 742 White women), there were 4168 pathology-confirmed incident breast cancers diagnosed through June 2023. Mean (SD) follow-up time was 5.3 (3.0) years. Using up to 4 years of prior mammogram images in addition to the most current mammogram, a 5-year AUROC of 0.78 (95% CI, 0.77-0.80) was obtained based on analysis of images alone. Performance was consistent across subgroups defined by race and ethnicity in East Asian (AUROC, 0.77; 95% CI, 0.75-0.79), Indigenous (AUROC, 0.77; 95% CI 0.71-0.83), and South Asian (AUROC, 0.75; 95% CI 0.71-0.79) women. Stratification by age gave a 5-year AUROC of 0.76 (95% CI, 0.74-0.78) for women aged 50 years or younger and 0.80 (95% CI, 0.78-0.82) for women older than 50 years. There were 18 839 participants (9.0%) with a 5-year risk greater than 3%, and the positive predictive value was 4.9% with an incidence of 11.8 per 1000 person-years. A dynamic MRS generated from both current and prior mammograms showed robust performance across diverse racial and ethnic populations in a province-wide screening program starting from age 40 years, reflecting improved accuracy for racially and ethnically diverse populations.
Page 40 of 1411405 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.