Sort by:
Page 4 of 25243 results

Image quality assessment of artificial intelligence iterative reconstruction for low dose unenhanced abdomen: comparison with hybrid iterative reconstruction.

Qi H, Cui D, Xu S, Li W, Zeng Q

pubmed logopapersJul 1 2025
To assess the impact of artificial intelligence iterative reconstruction algorithms (AIIR) on image quality with phantom and clinical studies. The phantom images were reconstructed with the hybrid iterative algorithm (HIR: Karl 3D-3, 5, 7, 9) and AIIR (grades 1-5) algorithm. Noise power spectra (NPS), task transfer functions (TTF) were measured, and additionally sharpness was assessed using a "blur metric" procedure. Sixty-two consecutive patients underwent standard-dose and low-dose unenhanced abdominal computed tomography (CT) scans, i.e., SDCT and LDCT groups, respectively. The SDCT images reconstructed using the Karl 3D-5, and the LDCT images reconstructed using the Karl 3D-5 and the AIIR-3 and 5, respectively. CT values, standard deviation (SD), signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were assessed for hepatic parenchyma and paravertebral muscles. Images were independently evaluated by two radiologists for image-quality, noise, sharpness, and lesion diagnostic confidence. In the phantom study, AIIR algorithm provided higher TTF<sub>50%</sub> and NPS average spatial frequency compared to HIR. In the clinical study, there was no statistically significant difference in CT values among the four reconstruction images (p > 0.05). The LDCT group AIIR-3 obtained the lowest SD values and the highest mean CNR and SNR values compared to the other three groups (p < 0.05). For qualitative assessment, the image subjective characteristic scores of AIIR-5 in the LDCT group, compared with the SDCT group, were not statistically significant (p > 0.05). AIIR reduces radiation dose levels by approximately 78% and still maintains the image quality of unenhanced abdominal CT compared to HIR with SDCT. NCT06142539.

Deep learning model for low-dose CT late iodine enhancement imaging and extracellular volume quantification.

Yu Y, Wu D, Lan Z, Dai X, Yang W, Yuan J, Xu Z, Wang J, Tao Z, Ling R, Zhang S, Zhang J

pubmed logopapersJul 1 2025
To develop and validate deep learning (DL)-models that denoise late iodine enhancement (LIE) images and enable accurate extracellular volume (ECV) quantification. This study retrospectively included patients with chest discomfort who underwent CT myocardial perfusion + CT angiography + LIE from two hospitals. Two DL models, residual dense network (RDN) and conditional generative adversarial network (cGAN), were developed and validated. 423 patients were randomly divided into training (182 patients), tuning (48 patients), internal validation (92 patients) and external validation group (101 patients). LIE<sub>single</sub> (single-stack image), LIE<sub>averaging</sub> (averaging multiple-stack images), LIE<sub>RDN</sub> (single-stack image denoised by RDN) and LIE<sub>GAN</sub> (single-stack image denoised by cGAN) were generated. We compared image quality score, signal-to-noise (SNR) and contrast-to-noise (CNR) of four LIE sets. The identifiability of denoised images for positive LIE and increased ECV (> 30%) was assessed. The image quality of LIE<sub>GAN</sub> (SNR: 13.3 ± 1.9; CNR: 4.5 ± 1.1) and LIE<sub>RDN</sub> (SNR: 20.5 ± 4.7; CNR: 7.5 ± 2.3) images was markedly better than that of LIE<sub>single</sub> (SNR: 4.4 ± 0.7; CNR: 1.6 ± 0.4). At per-segment level, the area under the curve (AUC) of LIE<sub>RDN</sub> images for LIE evaluation was significantly improved compared with those of LIE<sub>GAN</sub> and LIE<sub>single</sub> images (p = 0.040 and p < 0.001, respectively). Meanwhile, the AUC and accuracy of ECV<sub>RDN</sub> were significantly higher than those of ECV<sub>GAN</sub> and ECV<sub>single</sub> at per-segment level (p < 0.001 for all). RDN model generated denoised LIE images with markedly higher SNR and CNR than the cGAN-model and original images, which significantly improved the identifiability of visual analysis. Moreover, using denoised single-stack images led to accurate CT-ECV quantification. Question Can the developed models denoise CT-derived late iodine enhancement high images and improve signal-to-noise ratio? Findings The residual dense network model significantly improved the image quality for late iodine enhancement and enabled accurate CT- extracellular volume quantification. Clinical relevance The residual dense network model generates denoised late iodine enhancement images with the highest signal-to-noise ratio and enables accurate quantification of extracellular volume.

MDPG: Multi-domain Diffusion Prior Guidance for MRI Reconstruction

Lingtong Zhang, Mengdie Song, Xiaohan Hao, Huayu Mai, Bensheng Qiu

arxiv logopreprintJun 30 2025
Magnetic Resonance Imaging (MRI) reconstruction is essential in medical diagnostics. As the latest generative models, diffusion models (DMs) have struggled to produce high-fidelity images due to their stochastic nature in image domains. Latent diffusion models (LDMs) yield both compact and detailed prior knowledge in latent domains, which could effectively guide the model towards more effective learning of the original data distribution. Inspired by this, we propose Multi-domain Diffusion Prior Guidance (MDPG) provided by pre-trained LDMs to enhance data consistency in MRI reconstruction tasks. Specifically, we first construct a Visual-Mamba-based backbone, which enables efficient encoding and reconstruction of under-sampled images. Then pre-trained LDMs are integrated to provide conditional priors in both latent and image domains. A novel Latent Guided Attention (LGA) is proposed for efficient fusion in multi-level latent domains. Simultaneously, to effectively utilize a prior in both the k-space and image domain, under-sampled images are fused with generated full-sampled images by the Dual-domain Fusion Branch (DFB) for self-adaption guidance. Lastly, to further enhance the data consistency, we propose a k-space regularization strategy based on the non-auto-calibration signal (NACS) set. Extensive experiments on two public MRI datasets fully demonstrate the effectiveness of the proposed methodology. The code is available at https://github.com/Zolento/MDPG.

FD-DiT: Frequency Domain-Directed Diffusion Transformer for Low-Dose CT Reconstruction

Qiqing Liu, Guoquan Wei, Zekun Zhou, Yiyang Wen, Liu Shi, Qiegen Liu

arxiv logopreprintJun 30 2025
Low-dose computed tomography (LDCT) reduces radiation exposure but suffers from image artifacts and loss of detail due to quantum and electronic noise, potentially impacting diagnostic accuracy. Transformer combined with diffusion models has been a promising approach for image generation. Nevertheless, existing methods exhibit limitations in preserving finegrained image details. To address this issue, frequency domain-directed diffusion transformer (FD-DiT) is proposed for LDCT reconstruction. FD-DiT centers on a diffusion strategy that progressively introduces noise until the distribution statistically aligns with that of LDCT data, followed by denoising processing. Furthermore, we employ a frequency decoupling technique to concentrate noise primarily in high-frequency domain, thereby facilitating effective capture of essential anatomical structures and fine details. A hybrid denoising network is then utilized to optimize the overall data reconstruction process. To enhance the capability in recognizing high-frequency noise, we incorporate sliding sparse local attention to leverage the sparsity and locality of shallow-layer information, propagating them via skip connections for improving feature representation. Finally, we propose a learnable dynamic fusion strategy for optimal component integration. Experimental results demonstrate that at identical dose levels, LDCT images reconstructed by FD-DiT exhibit superior noise and artifact suppression compared to state-of-the-art methods.

Physics informed guided diffusion for accelerated multi-parametric MRI reconstruction

Perla Mayo, Carolin M. Pirkl, Alin Achim, Bjoern Menze, Mohammad Golbabaee

arxiv logopreprintJun 29 2025
We introduce MRF-DiPh, a novel physics informed denoising diffusion approach for multiparametric tissue mapping from highly accelerated, transient-state quantitative MRI acquisitions like Magnetic Resonance Fingerprinting (MRF). Our method is derived from a proximal splitting formulation, incorporating a pretrained denoising diffusion model as an effective image prior to regularize the MRF inverse problem. Further, during reconstruction it simultaneously enforces two key physical constraints: (1) k-space measurement consistency and (2) adherence to the Bloch response model. Numerical experiments on in-vivo brain scans data show that MRF-DiPh outperforms deep learning and compressed sensing MRF baselines, providing more accurate parameter maps while better preserving measurement fidelity and physical model consistency-critical for solving reliably inverse problems in medical imaging.

Photon-counting micro-CT scanner for deep learning-enabled small animal perfusion imaging.

Allphin AJ, Nadkarni R, Clark DP, Badea CT

pubmed logopapersJun 27 2025
In this work, we introduce a benchtop, turn-table photon-counting (PC) micro-CT scanner and highlight its application for dynamic small animal perfusion imaging.&#xD;Approach: Built on recently published hardware, the system now features a CdTe-based photon-counting detector (PCD). We validated its static spectral PC micro-CT imaging using conventional phantoms and assessed dynamic performance with a custom flow-configurable dual-compartment perfusion phantom. The phantom was scanned under varied flow conditions during injections of a low molecular weight iodinated contrast agent. In vivo mouse studies with identical injection settings demonstrated potential applications. A pretrained denoising CNN processed large multi-energy, temporal datasets (20 timepoints × 4 energies × 3 spatial dimensions), reconstructed via weighted filtered back projection. A separate CNN, trained on simulated data, performed gamma variate-based 2D perfusion mapping, evaluated qualitatively in phantom and in vivo tests.&#xD;Main Results: Full five-dimensional reconstructions were denoised using a CNN in ~3% of the time of iterative reconstruction, reducing noise in water at the highest energy threshold from 1206 HU to 86 HU. Decomposed iodine maps, which improved contrast to noise ratio from 16.4 (in the lowest energy CT images) to 29.4 (in the iodine maps), were used for perfusion analysis. The perfusion CNN outperformed pixelwise gamma variate fitting by ~33%, with a test set error of 0.04 vs. 0.06 in blood flow index (BFI) maps, and quantified linear BFI changes in the phantom with a coefficient of determination of 0.98.&#xD;Significance: This work underscores the PC micro-CT scanner's utility for high-throughput small animal perfusion imaging, leveraging spectral PC micro-CT and iodine decomposition. It provides a versatile platform for preclinical vascular research and advanced, time-resolved studies of disease models and therapeutic interventions.

Noise-Inspired Diffusion Model for Generalizable Low-Dose CT Reconstruction

Qi Gao, Zhihao Chen, Dong Zeng, Junping Zhang, Jianhua Ma, Hongming Shan

arxiv logopreprintJun 27 2025
The generalization of deep learning-based low-dose computed tomography (CT) reconstruction models to doses unseen in the training data is important and remains challenging. Previous efforts heavily rely on paired data to improve the generalization performance and robustness through collecting either diverse CT data for re-training or a few test data for fine-tuning. Recently, diffusion models have shown promising and generalizable performance in low-dose CT (LDCT) reconstruction, however, they may produce unrealistic structures due to the CT image noise deviating from Gaussian distribution and imprecise prior information from the guidance of noisy LDCT images. In this paper, we propose a noise-inspired diffusion model for generalizable LDCT reconstruction, termed NEED, which tailors diffusion models for noise characteristics of each domain. First, we propose a novel shifted Poisson diffusion model to denoise projection data, which aligns the diffusion process with the noise model in pre-log LDCT projections. Second, we devise a doubly guided diffusion model to refine reconstructed images, which leverages LDCT images and initial reconstructions to more accurately locate prior information and enhance reconstruction fidelity. By cascading these two diffusion models for dual-domain reconstruction, our NEED requires only normal-dose data for training and can be effectively extended to various unseen dose levels during testing via a time step matching strategy. Extensive qualitative, quantitative, and segmentation-based evaluations on two datasets demonstrate that our NEED consistently outperforms state-of-the-art methods in reconstruction and generalization performance. Source code is made available at https://github.com/qgao21/NEED.

Self-supervised learning for MRI reconstruction: a review and new perspective.

Li X, Huang J, Sun G, Yang Z

pubmed logopapersJun 26 2025
To review the latest developments in self-supervised deep learning (DL) techniques for magnetic resonance imaging (MRI) reconstruction, emphasizing their potential to overcome the limitations of supervised methods dependent on fully sampled k-space data. While DL has significantly advanced MRI, supervised approaches require large amounts of fully sampled k-space data for training-a major limitation given the impracticality and expense of acquiring such data clinically. Self-supervised learning has emerged as a promising alternative, enabling model training using only undersampled k-space data, thereby enhancing feasibility and driving research interest. We conducted a comprehensive literature review to synthesize recent progress in self-supervised DL for MRI reconstruction. The analysis focused on methods and architectures designed to improve image quality, reduce scanning time, and address data scarcity challenges, drawing from peer-reviewed publications and technical innovations in the field. Self-supervised DL holds transformative potential for MRI reconstruction, offering solutions to data limitations while maintaining image quality and accelerating scans. Key challenges include robustness across diverse anatomies, standardization of validation, and clinical integration. Future research should prioritize hybrid methodologies, domain-specific adaptations, and rigorous clinical validation. This review consolidates advancements and unresolved issues, providing a foundation for next-generation medical imaging technologies.

Morphology-based radiological-histological correlation on ultra-high-resolution energy-integrating detector CT using cadaveric human lungs: nodule and airway analysis.

Hata A, Yanagawa M, Ninomiya K, Kikuchi N, Kurashige M, Nishigaki D, Doi S, Yamagata K, Yoshida Y, Ogawa R, Tokuda Y, Morii E, Tomiyama N

pubmed logopapersJun 26 2025
To evaluate the depiction capability of fine lung nodules and airways using high-resolution settings on ultra-high-resolution energy-integrating detector CT (UHR-CT), incorporating large matrix sizes, thin-slice thickness, and iterative reconstruction (IR)/deep-learning reconstruction (DLR), using cadaveric human lungs and corresponding histological images. Images of 20 lungs were acquired using conventional CT (CCT), UHR-CT, and photon-counting detector CT (PCD-CT). CCT images were reconstructed with a 512 matrix and IR (CCT-512-IR). UHR-CT images were reconstructed with four settings by varying the matrix size and the reconstruction method: UHR-512-IR, UHR-1024-IR, UHR-2048-IR, and UHR-1024-DLR. Two imaging settings of PCD-CT were used: PCD-512-IR and PCD-1024-IR. CT images were visually evaluated and compared with histology. Overall, 6769 nodules (median: 1321 µm) and 92 airways (median: 851 µm) were evaluated. For nodules, UHR-2048-IR outperformed CCT-512-IR, UHR-512-IR, and UHR-1024-IR (p < 0.001). UHR-1024-DLR showed no significant difference from UHR-2048-IR in the overall nodule score after Bonferroni correction (uncorrected p = 0.043); however, for nodules > 1000 μm, UHR-2048-IR demonstrated significantly better scores than UHR-1024-DLR (p = 0.003). For airways, UHR-1024-IR and UHR-512-IR showed significant differences (p < 0.001), with no notable differences among UHR-1024-IR, UHR-2048-IR, and UHR-1024-DLR. UHR-2048-IR detected nodules and airways with median diameters of 604 µm and 699 µm, respectively. No significant difference was observed between UHR-512-IR and PCD-512-IR (p > 0.1). PCD-1024-IR outperformed UHR-CTs for nodules > 1000 μm (p ≤ 0.001), while UHR-1024-DLR outperformed PCD-1024-IR for airways > 1000 μm (p = 0.005). UHR-2048-IR demonstrated the highest scores among the evaluated EID-CT images. UHR-CT showed potential for detecting submillimeter nodules and airways. With the 512 matrix, UHR-CT demonstrated performance comparable to PCD-CT. Question There are scarce data evaluating the depiction capabilities of ultra-high-resolution energy-integrating detector CT (UHR-CT) for fine structures, nor any comparisons with photon-counting detector CT (PCD-CT). Findings UHR-CT depicted nodules and airways with median diameters of 604 µm and 699 µm, showing no significant difference from PCD-CT with the 512 matrix. Clinical relevance High-resolution imaging is crucial for lung diagnosis. UHR-CT has the potential to contribute to pulmonary nodule diagnosis and airway disease evaluation by detecting fine opacities and airways.

Improving Clinical Utility of Fetal Cine CMR Using Deep Learning Super-Resolution.

Vollbrecht TM, Hart C, Katemann C, Isaak A, Voigt MB, Pieper CC, Kuetting D, Geipel A, Strizek B, Luetkens JA

pubmed logopapersJun 26 2025
Fetal cardiovascular magnetic resonance is an emerging tool for prenatal congenital heart disease assessment, but long acquisition times and fetal movements limit its clinical use. This study evaluates the clinical utility of deep learning super-resolution reconstructions for rapidly acquired, low-resolution fetal cardiovascular magnetic resonance. This prospective study included participants with fetal congenital heart disease undergoing fetal cardiovascular magnetic resonance in the third trimester of pregnancy, with axial cine images acquired at normal resolution and low resolution. Low-resolution cine data was subsequently reconstructed using a deep learning super-resolution framework (cine<sub>DL</sub>). Acquisition times, apparent signal-to-noise ratio, contrast-to-noise ratio, and edge rise distance were assessed. Volumetry and functional analysis were performed. Qualitative image scores were rated on a 5-point Likert scale. Cardiovascular structures and pathological findings visible in cine<sub>DL</sub> images only were assessed. Statistical analysis included the Student paired <i>t</i> test and the Wilcoxon test. A total of 42 participants were included (median gestational age, 35.9 weeks [interquartile range (IQR), 35.1-36.4]). Cine<sub>DL</sub> acquisition was faster than cine images acquired at normal resolution (134±9.6 s versus 252±8.8 s; <i>P</i><0.001). Quantitative image quality metrics and image quality scores for cine<sub>DL</sub> were higher or comparable with those of cine images acquired at normal-resolution images (eg, fetal motion, 4.0 [IQR, 4.0-5.0] versus 4.0 [IQR, 3.0-4.0]; <i>P</i><0.001). Nonpatient-related artifacts (eg, backfolding) were more pronounced in Cine<sub>DL</sub> compared with cine images acquired at normal-resolution images (4.0 [IQR, 4.0-5.0] versus 5.0 [IQR, 3.0-4.0]; <i>P</i><0.001). Volumetry and functional results were comparable. Cine<sub>DL</sub> revealed additional structures in 10 of 42 fetuses (24%) and additional pathologies in 5 of 42 fetuses (12%), including partial anomalous pulmonary venous connection. Deep learning super-resolution reconstructions of low-resolution acquisitions shorten acquisition times and achieve diagnostic quality comparable with standard images, while being less sensitive to fetal bulk movements, leading to additional diagnostic findings. Therefore, deep learning super-resolution may improve the clinical utility of fetal cardiovascular magnetic resonance for accurate prenatal assessment of congenital heart disease.
Page 4 of 25243 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.