Sort by:
Page 39 of 39382 results

Current application, possibilities, and challenges of artificial intelligence in the management of rheumatoid arthritis, axial spondyloarthritis, and psoriatic arthritis.

Bilgin E

pubmed logopapersJan 1 2025
This narrative review outlines the current applications and considerations of artificial intelligence (AI) for diagnosis, management, and prognosis in rheumatoid arthritis (RA), axial spondyloarthritis (axSpA), and psoriatic arthritis (PsA). Advances in AI, mainly in machine learning and deep learning, have significantly influenced medical research and clinical practice over the past decades by offering precisions in data understanding and treatment approaches. AI applications have enhanced risk prediction models, early diagnosis, and better management in RA. Predictive models have guided treatment decisions such as-response to methotrexate and biologics-while wearable devices and electronic health records (EHR) improve disease activity monitoring. In addition, AI applications are reported as promising for the early identification of extra-articular involvements, prediction, detection, and assessment of comorbidities. In axSpA, AI-driven models using imaging techniques such as sacroiliac radiography, magnetic resonance imaging, and computed tomography have increased diagnostic accuracy, especially for early inflammatory changes. Predictive algorithms help stratify and predict disease outcomes, while clinical decision support systems integrate clinical and imaging data for optimized management. For PsA, AI has also allowed for early detection among psoriasis patients using genetic markers, immune profiling, and EHR-based natural language processing systems. Overall, AI models may predict diagnosis, disease severity, treatment response, and comorbidities to improve care in patients with RA, axSpA, and PsA. As a rapidly developing and improving area, AI has the potential to change our current perspective of medical practice by offering better diagnostic evaluation and treatments and improved patient follow-up. Multimodal AI, focusing on collaboration, reliability, transparency, and patient-centered innovation, looks like the future of medical practice. However, data quality, model interpretability, and ethical considerations must be addressed to ensure reliable and equitable applications in clinical practice.

RRFNet: A free-anchor brain tumor detection and classification network based on reparameterization technology.

Liu W, Guo X

pubmed logopapersJan 1 2025
Advancements in medical imaging technology have facilitated the acquisition of high-quality brain images through computed tomography (CT) or magnetic resonance imaging (MRI), enabling professional brain specialists to diagnose brain tumors more effectively. However, manual diagnosis is time-consuming, which has led to the growing importance of automatic detection and classification through brain imaging. Conventional object detection models for brain tumor detection face limitations in brain tumor detection owing to the significant differences between medical images and natural scene images, as well as challenges such as complex backgrounds, noise interference, and blurred boundaries between cancerous and normal tissues. This study investigates the application of deep learning to brain tumor detection, analyzing the effect of three factors, the number of model parameters, input data batch size, and the use of anchor boxes, on detection performance. Experimental results reveal that an excessive number of model parameters or the use of anchor boxes may reduce detection accuracy. However, increasing the number of brain tumor samples improves detection performance. This study, introduces a backbone network built using RepConv and RepC3, along with FGConcat feature map splicing module to optimize the brain tumor detection model. The experimental results show that the proposed RepConv-RepC3-FGConcat Network (RRFNet) can learn underlying semantic information about brain tumors during training stage, while maintaining a low number of parameters during inference, which improves the speed of brain tumor detection. Compared with YOLOv8, RRFNet achieved a higher accuracy in brain tumor detection, with a mAP value of 79.2%. This optimized approach enhances both accuracy and efficiency, which is essential in clinical settings where time and precision are critical.
Page 39 of 39382 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.