Sort by:
Page 39 of 99990 results

Artificial intelligence: a new era in prostate cancer diagnosis and treatment.

Vidiyala N, Parupathi P, Sunkishala P, Sree C, Gujja A, Kanagala P, Meduri SK, Nyavanandi D

pubmed logopapersAug 4 2025
Prostate cancer (PCa) represents one of the most prevalent cancers among men, with substantial challenges in timely and accurate diagnosis and subsequent treatment. Traditional diagnosis and treatment methods for PCa, such as prostate-specific antigen (PSA) biomarker detection, digital rectal examination, imaging (CT/MRI) analysis, and biopsy histopathological examination, suffer from limitations such as a lack of specificity, generation of false positives or negatives, and difficulty in handling large data, leading to overdiagnosis and overtreatment. The integration of artificial intelligence (AI) in PCa diagnosis and treatment is revolutionizing traditional approaches by offering advanced tools for early detection, personalized treatment planning, and patient management. AI technologies, especially machine learning and deep learning, improve diagnostic accuracy and treatment planning. The AI algorithms analyze imaging data, like MRI and ultrasound, to identify cancerous lesions effectively with great precision. In addition, AI algorithms enhance risk assessment and prognosis by combining clinical, genomic, and imaging data. This leads to more tailored treatment strategies, enabling informed decisions about active surveillance, surgery, or new therapies, thereby improving quality of life while reducing unnecessary diagnoses and treatments. This review examines current AI applications in PCa care, focusing on their transformative impact on diagnosis and treatment planning while recognizing potential challenges. It also outlines expected improvements in diagnosis through AI-integrated systems and decision support tools for healthcare teams. The findings highlight AI's potential to enhance clinical outcomes, operational efficiency, and patient-centred care in managing PCa.

Enhanced detection of ovarian cancer using AI-optimized 3D CNNs for PET/CT scan analysis.

Sadeghi MH, Sina S, Faghihi R, Alavi M, Giammarile F, Omidi H

pubmed logopapersAug 4 2025
This study investigates how deep learning (DL) can enhance ovarian cancer diagnosis and staging using large imaging datasets. Specifically, we compare six conventional convolutional neural network (CNN) architectures-ResNet, DenseNet, GoogLeNet, U-Net, VGG, and AlexNet-with OCDA-Net, an enhanced model designed for [<sup>18</sup>F]FDG PET image analysis. The OCDA-Net, an advancement on the ResNet architecture, was thoroughly compared using randomly split datasets of training (80%), validation (10%), and test (10%) images. Trained over 100 epochs, OCDA-Net achieved superior diagnostic classification with an accuracy of 92%, and staging results of 94%, supported by robust precision, recall, and F-measure metrics. Grad-CAM ++ heat-maps confirmed that the network attends to hyper-metabolic lesions, supporting clinical interpretability. Our findings show that OCDA-Net outperforms existing CNN models and has strong potential to transform ovarian cancer diagnosis and staging. The study suggests that implementing these DL models in clinical practice could ultimately improve patient prognoses. Future research should expand datasets, enhance model interpretability, and validate these models in clinical settings.

TopoImages: Incorporating Local Topology Encoding into Deep Learning Models for Medical Image Classification

Pengfei Gu, Hongxiao Wang, Yejia Zhang, Huimin Li, Chaoli Wang, Danny Chen

arxiv logopreprintAug 3 2025
Topological structures in image data, such as connected components and loops, play a crucial role in understanding image content (e.g., biomedical objects). % Despite remarkable successes of numerous image processing methods that rely on appearance information, these methods often lack sensitivity to topological structures when used in general deep learning (DL) frameworks. % In this paper, we introduce a new general approach, called TopoImages (for Topology Images), which computes a new representation of input images by encoding local topology of patches. % In TopoImages, we leverage persistent homology (PH) to encode geometric and topological features inherent in image patches. % Our main objective is to capture topological information in local patches of an input image into a vectorized form. % Specifically, we first compute persistence diagrams (PDs) of the patches, % and then vectorize and arrange these PDs into long vectors for pixels of the patches. % The resulting multi-channel image-form representation is called a TopoImage. % TopoImages offers a new perspective for data analysis. % To garner diverse and significant topological features in image data and ensure a more comprehensive and enriched representation, we further generate multiple TopoImages of the input image using various filtration functions, which we call multi-view TopoImages. % The multi-view TopoImages are fused with the input image for DL-based classification, with considerable improvement. % Our TopoImages approach is highly versatile and can be seamlessly integrated into common DL frameworks. Experiments on three public medical image classification datasets demonstrate noticeably improved accuracy over state-of-the-art methods.

Medical Image De-Identification Resources: Synthetic DICOM Data and Tools for Validation

Michael W. Rutherford, Tracy Nolan, Linmin Pei, Ulrike Wagner, Qinyan Pan, Phillip Farmer, Kirk Smith, Benjamin Kopchick, Laura Opsahl-Ong, Granger Sutton, David Clunie, Keyvan Farahani, Fred Prior

arxiv logopreprintAug 3 2025
Medical imaging research increasingly depends on large-scale data sharing to promote reproducibility and train Artificial Intelligence (AI) models. Ensuring patient privacy remains a significant challenge for open-access data sharing. Digital Imaging and Communications in Medicine (DICOM), the global standard data format for medical imaging, encodes both essential clinical metadata and extensive protected health information (PHI) and personally identifiable information (PII). Effective de-identification must remove identifiers, preserve scientific utility, and maintain DICOM validity. Tools exist to perform de-identification, but few assess its effectiveness, and most rely on subjective reviews, limiting reproducibility and regulatory confidence. To address this gap, we developed an openly accessible DICOM dataset infused with synthetic PHI/PII and an evaluation framework for benchmarking image de-identification workflows. The Medical Image de-identification (MIDI) dataset was built using publicly available de-identified data from The Cancer Imaging Archive (TCIA). It includes 538 subjects (216 for validation, 322 for testing), 605 studies, 708 series, and 53,581 DICOM image instances. These span multiple vendors, imaging modalities, and cancer types. Synthetic PHI and PII were embedded into structured data elements, plain text data elements, and pixel data to simulate real-world identity leaks encountered by TCIA curation teams. Accompanying evaluation tools include a Python script, answer keys (known truth), and mapping files that enable automated comparison of curated data against expected transformations. The framework is aligned with the HIPAA Privacy Rule "Safe Harbor" method, DICOM PS3.15 Confidentiality Profiles, and TCIA best practices. It supports objective, standards-driven evaluation of de-identification workflows, promoting safer and more consistent medical image sharing.

Joint Lossless Compression and Steganography for Medical Images via Large Language Models

Pengcheng Zheng, Xiaorong Pu, Kecheng Chen, Jiaxin Huang, Meng Yang, Bai Feng, Yazhou Ren, Jianan Jiang

arxiv logopreprintAug 3 2025
Recently, large language models (LLMs) have driven promis ing progress in lossless image compression. However, di rectly adopting existing paradigms for medical images suf fers from an unsatisfactory trade-off between compression performance and efficiency. Moreover, existing LLM-based compressors often overlook the security of the compres sion process, which is critical in modern medical scenarios. To this end, we propose a novel joint lossless compression and steganography framework. Inspired by bit plane slicing (BPS), we find it feasible to securely embed privacy messages into medical images in an invisible manner. Based on this in sight, an adaptive modalities decomposition strategy is first devised to partition the entire image into two segments, pro viding global and local modalities for subsequent dual-path lossless compression. During this dual-path stage, we inno vatively propose a segmented message steganography algo rithm within the local modality path to ensure the security of the compression process. Coupled with the proposed anatom ical priors-based low-rank adaptation (A-LoRA) fine-tuning strategy, extensive experimental results demonstrate the su periority of our proposed method in terms of compression ra tios, efficiency, and security. The source code will be made publicly available.

Advances in renal cancer: diagnosis, treatment, and emerging technologies.

Saida T, Iima M, Ito R, Ueda D, Nishioka K, Kurokawa R, Kawamura M, Hirata K, Honda M, Takumi K, Ide S, Sugawara S, Watabe T, Sakata A, Yanagawa M, Sofue K, Oda S, Naganawa S

pubmed logopapersAug 2 2025
This review provides a comprehensive overview of current practices and recent advancements in the diagnosis and treatment of renal cancer. It introduces updates in histological classification and explains the imaging characteristics of each tumour based on these changes. The review highlights state-of-the-art imaging modalities, including magnetic resonance imaging, computed tomography, positron emission tomography, and ultrasound, emphasising their crucial role in tumour characterisation and optimising treatment planning. Emerging technologies, such as radiomics and artificial intelligence, are also discussed for their transformative impact on enhancing diagnostic precision, prognostic prediction, and personalised patient management. Furthermore, the review explores current treatment options, including minimally invasive techniques such as cryoablation, radiofrequency ablation, and stereotactic body radiation therapy, as well as systemic therapies such as immune checkpoint inhibitors and targeted therapies.

[Tips and tricks for the cytological management of cysts].

Lacoste-Collin L, Fabre M

pubmed logopapersAug 2 2025
Fine needle aspiration is a well-known procedure for the diagnosis and management of solid lesions. The approach to cystic lesions on fine needle-aspiration is becoming a popular diagnostic tool due to the increased availability of high-quality cross-sectional imaging such as computed tomography and ultrasound guided procedures like endoscopic ultrasound. Cystic lesions are closed cavities containing liquid, sometimes partially solid with various internal neoplastic and non-neoplastic components. The most frequently punctured cysts are in the neck (thyroid and salivary glands), mediastinum, breast and abdomen (pancreas and liver). The diagnostic accuracy of cytological cyst sampling is highly dependent on laboratory material management. This review highlights how to approach the main features of superficial and deep organ cysts using basic cytological techniques (direct smears, cytocentrifugation), liquid-based cytology and cell block. We show the role of a multimodal approach that can lead to a wider implementation of ancillary tests (biochemical, immunocytochemical and molecular) to improve diagnostic accuracy and clinical management of patients with cystic lesions. In the near future, artificial intelligence models will offer detection, classification and prediction capabilities for various cystic lesions. Two examples in pancreatic and thyroid cytopathology are particularly developed.

Deep Learning in Myocarditis: A Novel Approach to Severity Assessment

Nishimori, M., Otani, T., Asaumi, Y., Ohta-Ogo, K., Ikeda, Y., Amemiya, K., Noguchi, T., Izumi, C., Shinohara, M., Hatakeyama, K., Nishimura, K.

medrxiv logopreprintAug 2 2025
BackgroundMyocarditis is a life-threatening disease with significant hemodynamic risks during the acute phase. Although histopathological examination of myocardial biopsy specimens remains the gold standard for diagnosis, there is no established method for objectively quantifying cardiomyocyte damage. We aimed to develop an AI model to evaluate clinical myocarditis severity using comprehensive pathology data. MethodsWe retrospectively analyzed 314 patients (1076 samples) who underwent myocardial biopsy from 2002 to 2021 at the National Cerebrovascular Center. Among these patients, 158 were diagnosed with myocarditis based on the Dallas criteria. A Multiple Instance Learning (MIL) model served as a pre-trained classifier to detect myocarditis across whole-slide images. We then constructed two clinical severity-prediction models: (1) a logistic regression model (Model 1) using the density of inflammatory cells per unit area, and (2) a Transformer-based model (Model 2), which processed the top-ranked patches identified by the MIL model to predict clinical severe outcomes. ResultsModel 1 achieved an AUROC of 0.809, indicating a robust association between inflammatory cell density and severe myocarditis. In contrast, Model 2, the Transformer-based approach, yielded an AUROC of 0.993 and demonstrated higher accuracy and precision for severity prediction. Attention score visualizations showed that Model 2 captured both inflammatory cell infiltration and additional morphological features. These findings suggest that combining MIL with Transformer architectures enables more comprehensive identification of key histological markers associated with clinical severe disease. ConclusionsOur results highlight that a Transformer-based AI model analyzing whole-slide pathology images can accurately assess clinical myocarditis severity. Moreover, simply quantifying the extent of inflammatory cell infiltration also correlates strongly with clinical outcomes. These methods offer a promising avenue for improving diagnostic precision, guiding treatment decisions, and ultimately enhancing patient management. Future prospective studies are warranted to validate these models in broader clinical settings and facilitate their integration into routine pathological workflows. What is new?- This is the first study to apply an AI model for the diagnosis and severity assessment of myocarditis. - New evidence shows that inflammatory cell infiltration is related to the severity of myocarditis. - Using information from the entire tissue, not just inflammatory cells, allows for a more accurate assessment of myocarditis severity. What are the clinical implications?- The use of the AI model allows for an unprecedented histological evaluation of myocarditis severity, which can enhance early diagnosis and intervention strategies. - Rapid and precise assessments of myocarditis severity by the AI model can support clinicians in making timely and appropriate treatment decisions, potentially improving patient outcomes. - The incorporation of this AI model into clinical practice may streamline diagnostic workflows and optimize the allocation of medical resources, enhancing overall patient care.

Multimodal data curation via interoperability: use cases with the Medical Imaging and Data Resource Center.

Chen W, Whitney HM, Kahaki S, Meyer C, Li H, Sá RC, Lauderdale D, Napel S, Gersing K, Grossman RL, Giger ML

pubmed logopapersAug 1 2025
Interoperability (the ability of data or tools from non-cooperating resources to integrate or work together with minimal effort) is particularly important for curation of multimodal datasets from multiple data sources. The Medical Imaging and Data Resource Center (MIDRC), a multi-institutional collaborative initiative to collect, curate, and share medical imaging datasets, has made interoperability with other data commons one of its top priorities. The purpose of this study was to demonstrate the interoperability between MIDRC and two other data repositories, BioData Catalyst (BDC) and National Clinical Cohort Collaborative (N3C). Using interoperability capabilities of the data repositories, we built two cohorts for example use cases, with each containing clinical and imaging data on matched patients. The representativeness of the cohorts is characterized by comparing with CDC population statistics using the Jensen-Shannon distance. The process and methods of interoperability demonstrated in this work can be utilized by MIDRC, BDC, and N3C users to create multimodal datasets for development of artificial intelligence/machine learning models.

Emerging Applications of Feature Selection in Osteoporosis Research: From Biomarker Discovery to Clinical Decision Support.

Wang J, Wang Y, Ren J, Li Z, Guo L, Lv J

pubmed logopapersAug 1 2025
Osteoporosis (OP), a systemic skeletal disease characterized by compromised bone strength and elevated fracture susceptibility, represents a growing global health challenge that necessitates early detection and accurate risk stratification. With the exponential growth of multidimensional biomedical data in OP research, feature selection has become an indispensable machine learning paradigm that improves model generalizability. At the same time, it preserves clinical interpretability and enhances predictive accuracy. This perspective article systematically reviews the transformative role of feature selection methodologies across three critical domains of OP investigation: 1) multi-omics biomarker identification, 2) diagnostic pattern recognition, and 3) fracture risk prognostication. In biomarker discovery, advanced feature selection algorithms systematically refine high-dimensional multi-omics datasets (genomic, proteomic, metabolomic) to isolate key molecular signatures correlated with bone mineral density (BMD) trajectories and microarchitectural deterioration. For clinical diagnostics, these techniques enable efficient extraction of discriminative pattern from multimodal imaging data, including dual-energy X-ray absorptiometry (DXA), quantitative computed tomography (CT), and emerging dental radiographic biomarkers. In prognostic modeling, strategic variable selection optimizes prognostic accuracy by integrating demographic, biochemical, and biomechanical predictors while migrating overfitting in heterogeneous patient cohorts. Current challenges include heterogeneity in dataset quality and dimensionality, translational gaps between algorithmic outputs and clinical decision parameters, and limited reproducibility across diverse populations. Future directions should prioritize the development of adaptive feature selection frameworks capable of dynamic multi-omics data integration, coupled with hybrid intelligence systems that synergize machine-derived biomarkers with clinician expertise. Addressing these challenges requires coordinated interdisciplinary efforts to establish standardized validation protocols and create clinician-friendly decision support interfaces, ultimately bridging the gap between computational OP research and personalized patient care.
Page 39 of 99990 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.