Sort by:
Page 36 of 1421417 results

Development and validation of machine learning models for distal instrumentation-related problems in patients with degenerative lumbar scoliosis based on preoperative CT and MRI.

Feng Z, Yang H, Li Z, Zhang X, Hai Y

pubmed logopapersJun 3 2025
This investigation proposes a machine learning framework leveraging preoperative MRI and CT imaging data to predict postoperative complications related to distal instrumentation (DIP) in degenerative lumbar scoliosis patients undergoing long-segment fusion procedures. We retrospectively analyzed 136 patients, categorizing based on the development of DIP. Preoperative MRI and CT scans provided muscle function and bone density data, including the relative gross cross-sectional area and relative functional cross-sectional area of the multifidus, erector spinae, paraspinal extensor, psoas major muscles, the gross muscle fat index and functional muscle fat index, Hounsfield unit values of the lumbosacral region and the lower instrumented vertebra. Predictive factors for DIP were selected through stepwise LASSO regression. The filtered and all factors were incorporated into six machine learning algorithms twice, namely k-nearest neighbors, decision tree, support vector machine, random forest, multilayer perceptron (MLP), and Naïve Bayes, with tenfold cross-validation. Among patients, 16.9% developed DIP, with the multifidus' functional cross-sectional area and lumbosacral region's Hounsfield unit value as significant predictors. The MLP model exhibited superior performance when all predictive factors were input, with an average AUC of 0.98 and recall rate of 0.90. We compared various machine learning algorithms and constructed, trained, and validated predictive models based on muscle function and bone density-related variables obtained from preoperative CT and MRI, which could identify patients with high risk of DIP after long-segment spinal fusion surgery.

Super-resolution sodium MRI of human gliomas at 3T using physics-based generative artificial intelligence.

Raymond C, Yao J, Kolkovsky ALL, Feiweier T, Clifford B, Meyer H, Zhong X, Han F, Cho NS, Sanvito F, Oshima S, Salamon N, Liau LM, Patel KS, Everson RG, Cloughesy TF, Ellingson BM

pubmed logopapersJun 3 2025
Sodium neuroimaging provides unique insights into the cellular and metabolic properties of brain tumors. However, at 3T, sodium neuroimaging MRI's low signal-to-noise ratio (SNR) and resolution discourages routine clinical use. We evaluated the recently developed Anatomically constrained GAN using physics-based synthetic MRI artifacts" (ATHENA) for high-resolution sodium neuroimaging of brain tumors at 3T. We hypothesized the model would improve the image quality while preserving the inherent sodium information. 4,573 proton MRI scans from 1,390 suspected brain tumor patients were used for training. Sodium and proton MRI datasets from Twenty glioma patients were collected for validation. Twenty-four image-guided biopsies from seven patients were available for sodium-proton exchanger (NHE1) expression evaluation on immunohistochemistry. High-resolution synthetic sodium images were generated using the ATHENA model, then compared to native sodium MRI and NHE1 protein expression from image-guided biopsy samples. The ATHENA produced synthetic-sodium MR with significantly improved SNR (native SNR 18.20 ± 7.04; synthetic SNR 23.83 ± 9.33, P = 0.0079). The synthetic-sodium values were consistent with the native measurements (P = 0.2058), with a strong linear correlation within contrast-enhancing areas of the tumor (R<sup>2</sup> = 0.7565, P = 0.0005), T2-hyperintense (R<sup>2</sup> = 0.7325, P < 0.0001), and necrotic areas (R<sup>2</sup> = 0.7678, P < 0.0001). The synthetic-sodium MR and the relative NHE1 expression from image-guided biopsies were better correlated for the synthetic (ρ = 0.3269, P < 0.0001) than the native (ρ = 0.1732, P = 0.0276) with higher sodium signal in samples expressing elevated NHE1 (P < 0.0001). ATHENA generates high-resolution synthetic-sodium MRI at 3T, enabling clinically attainable multinuclear imaging for brain tumors that retain the inherent information from the native sodium. The resulting synthetic sodium significantly correlates with tissue expression, potentially supporting its utility as a non-invasive marker of underlying sodium homeostasis in brain tumors.

Effect of contrast enhancement on diagnosis of interstitial lung abnormality in automatic quantitative CT measurement.

Choi J, Ahn Y, Kim Y, Noh HN, Do KH, Seo JB, Lee SM

pubmed logopapersJun 3 2025
To investigate the effect of contrast enhancement on the diagnosis of interstitial lung abnormalities (ILA) in automatic quantitative CT measurement in patients with paired pre- and post-contrast scans. Patients who underwent chest CT for thoracic surgery between April 2017 and December 2020 were retrospectively analyzed. ILA quantification was performed using deep learning-based automated software. Cases were categorized as ILA or non-ILA according to the Fleischner Society's definition, based on the quantification results or radiologist assessment (reference standard). Measurement variability, agreement, and diagnostic performance between the pre- and post-contrast scans were evaluated. In 1134 included patients, post-contrast scans quantified a slightly larger volume of nonfibrotic ILA (mean difference: -0.2%), due to increased ground-glass opacity and reticulation volumes (-0.2% and -0.1%), whereas the fibrotic ILA volume remained unchanged (0.0%). ILA was diagnosed in 15 (1.3%), 22 (1.9%), and 40 (3.5%) patients by pre- and post-contrast scans and radiologists, respectively. The agreement between the pre- and post-contrast scans was substantial (κ = 0.75), but both pre-contrast (κ = 0.46) and post-contrast (κ = 0.54) scans demonstrated moderate agreement with the radiologist. The sensitivity for ILA (32.5% vs. 42.5%, p = 0.221) and specificity for non-ILA (99.8% vs. 99.5%, p = 0.248) were comparable between pre- and post-contrast scans. Radiologist's reclassification for equivocal ILA due to unilateral abnormalities increased the sensitivity for ILA (67.5% and 75.0%, respectively) in both pre- and post-contrast scans. Applying automated quantification on post-contrast scans appears to be acceptable in terms of agreement and diagnostic performance; however, radiologists may need to improve sensitivity reclassifying equivocal ILA. Question The effect of contrast enhancement on the automated quantification of interstitial lung abnormality (ILA) remains unknown. Findings Automated quantification measured slightly larger ground-glass opacity and reticulation volumes on post-contrast scans than on pre-contrast scans; however, contrast enhancement did not affect the sensitivity for interstitial lung abnormality. Clinical relevance Applying automated quantification on post-contrast scans appears to be acceptable in terms of agreement and diagnostic performance.

Deep learning-based automatic segmentation of arterial vessel walls and plaques in MR vessel wall images for quantitative assessment.

Yang L, Yang X, Gong Z, Mao Y, Lu SS, Zhu C, Wan L, Huang J, Mohd Noor MH, Wu K, Li C, Cheng G, Li Y, Liang D, Liu X, Zheng H, Hu Z, Zhang N

pubmed logopapersJun 3 2025
To develop and validate a deep-learning-based automatic method for vessel walls and atherosclerotic plaques segmentation for quantitative evaluation in MR vessel wall images. A total of 193 patients (107 patients for training and validation, 39 patients for internal test, 47 patients for external test) with atherosclerotic plaque from five centers underwent T1-weighted MRI scans and were included in the dataset. The first step of the proposed method was constructing a purely learning-based convolutional neural network (CNN) named Vessel-SegNet to segment the lumen and the vessel wall. The second step is using the vessel wall priors (including manual prior and Tversky-loss-based automatic prior) to improve the plaque segmentation, which utilizes the morphological similarity between the vessel wall and the plaque. The Dice similarity coefficient (DSC), intraclass correlation coefficient (ICC), etc., were used to evaluate the similarity, agreement, and correlations. Most of the DSCs for lumen and vessel wall segmentation were above 90%. The introduction of vessel wall priors can increase the DSC for plaque segmentation by over 10%, reaching 88.45%. Compared to dice-loss-based vessel wall priors, the Tversky-loss-based priors can further improve DSC by nearly 3%, reaching 82.84%. Most of the ICC values between the Vessel-SegNet and manual methods in the 6 quantitative measurements are greater than 85% (p-value < 0.001). The proposed CNN-based segmentation model can quickly and accurately segment vessel walls and plaques for quantitative evaluation. Due to the lack of testing with other equipment, populations, and anatomical studies, the reliability of the research results still requires further exploration. Question How can the accuracy and efficiency of vessel component segmentation for quantification, including the lumen, vessel wall, and plaque, be improved? Findings Improved CNN models, manual/automatic vessel wall priors, and Tversky loss can improve the performance of semi-automatic/automatic vessel components segmentation for quantification. Clinical relevance Manual segmentation of vessel components is a time-consuming yet important process. Rapid and accurate segmentation of the lumen, vessel walls, and plaques for quantification assessment helps patients obtain more accurate, efficient, and timely stroke risk assessments and clinical recommendations.

Developing a CT radiomics-based model for assessing split renal function using machine learning.

Zhan Y, Zheng J, Chen X, Chen Y, Fang C, Lai C, Dai M, Wu Z, Wu H, Yu T, Huang J, Yu H

pubmed logopapersJun 3 2025
This study aims to investigate whether non-contrast computed tomography radiomics can effectively reflect split renal function and to develop a radiomics model for its assessment. This retrospective study included kidneys from the study center and split them into training (70%) and testing (30%) sets. Renal dynamic imaging was used as the reference standard for measuring split renal function. Based on chronic kidney disease staging, kidneys were categorized into three groups according to glomerular filtration rate: > 45 ml/min/1.73 m<sup>2</sup>, 30-45 ml/min/1.73 m<sup>2</sup>, and < 30 ml/min/1.73 m<sup>2</sup>.Features were selected based on feature importance ranking from a tree model, and a random forest radiomics model was built. A total of 543 kidneys were included, with 381 in the training set and 162 in the testing set. In the training set, 16 features identified as most important for distinguishing between the groups were ultimately included to develop the random forest model. The model demonstrated good discriminatory ability in the testing set. The AUC for the > 45 ml/min/1.73 m<sup>2</sup>, 30-45 ml/min/1.73 m<sup>2</sup>, and < 30 ml/min/1.73 m<sup>2</sup> categories were 0.859 (95% CI 0.804-0.910), 0.679 (95% CI 0.589-0.760), and 0.901 (95% CI 0.848-0.946), respectively. The calibration curves for the kidneys in each group closely align with the diagonal, with Hosmer-Lemeshow test P-values of 0.124, 0.241, and 0.199 for the three groups, respectively (all P > 0.05). The decision curve analysis confirmed the radiomics model's clinical utility, demonstrating significantly higher net benefit than both treat-all and treat-none strategies at clinically relevant probability thresholds: 1-69% and 71-75% for the > 45 ml/min/1.73 m<sup>2</sup> group, 15-d50% for the 30-45 ml/min/1.73 m<sup>2</sup> group, and 0-99% for the < 30 ml/min/1.73 m<sup>2</sup> group. Non-contrast computed tomography radiomics can effectively reflect split renal function information, and the model developed based on it can accurately assess split renal function, holding great potential for clinical application.

Automated Classification of Cervical Spinal Stenosis using Deep Learning on CT Scans.

Zhang YL, Huang JW, Li KY, Li HL, Lin XX, Ye HB, Chen YH, Tian NF

pubmed logopapersJun 3 2025
Retrospective study. To develop and validate a computed tomography-based deep learning(DL) model for diagnosing cervical spinal stenosis(CSS). Although magnetic resonance imaging (MRI) is widely used for diagnosing CSS, its inherent limitations, including prolonged scanning time, limited availability in resource-constrained settings, and contraindications for patients with metallic implants, make computed tomography (CT) a critical alternative in specific clinical scenarios. The development of CT-based DL models for CSS detection holds promise in transcending the diagnostic efficacy limitations of conventional CT imaging, thereby serving as an intelligent auxiliary tool to optimize healthcare resource allocation. Paired CT/MRI images were collected. CT images were divided into training, validation, and test sets in an 8:1:1 ratio. The two-stage model architecture employed: (1) a Faster R-CNN-based detection model for localization, annotation, and extraction of regions of interest (ROI); (2) comparison of 16 convolutional neural network (CNN) models for stenosis classification to select the best-performing model. The evaluation metrics included accuracy, F1-score, and Cohen's κ coefficient, with comparisons made against diagnostic results from physicians with varying years of experience. In the multiclass classification task, four high-performing models (DL1-b0, DL2-121, DL3-101, and DL4-26d) achieved accuracies of 88.74%, 89.40%, 89.40%, and 88.08%, respectively. All models demonstrated >80% consistency with senior physicians and >70% consistency with junior physicians.In the binary classification task, the models achieved accuracies of 94.70%, 96.03%, 96.03%, and 94.70%, respectively. All four models demonstrated consistency rates slightly below 90% with junior physicians. However, when compared with senior physicians, three models (excluding DL4-26d) exhibited consistency rates exceeding 90%. The DL model developed in this study demonstrated high accuracy in CT image analysis of CSS, with a diagnostic performance comparable to that of senior physicians.

Deep Learning Pipeline for Automated Assessment of Distances Between Tonsillar Tumors and the Internal Carotid Artery.

Jain A, Amanian A, Nagururu N, Creighton FX, Prisman E

pubmed logopapersJun 3 2025
Evaluating the minimum distance (dTICA) between the internal carotid artery (ICA) and tonsillar tumors (TT) on imaging is essential for preoperative planning; we propose a tool to automatically extract dTICA. CT scans of 96 patients with TT were selected from the cancer imaging archive. nnU-Net, a deep learning framework, was implemented to automatically segment both the TT and ICA from these scans. Dice similarity coefficient (DSC) and average hausdorff distance (AHD) were used to evaluate the performance of the nnU-Net. Thereafter, an automated tool was built to calculate the magnitude of dTICA from these segmentations. The average DSC and AHD were 0.67, 2.44 mm, and 0.83, 0.49 mm for the TT and ICA, respectively. The mean dTICA was 6.66 mm and statistically varied by tumor T stage (p = 0.00456). The proposed pipeline can accurately and automatically capture dTICA, potentially assisting clinicians in preoperative evaluation.

Artificial intelligence for detecting traumatic intracranial haemorrhage with CT: A workflow-oriented implementation.

Abed S, Hergan K, Pfaff J, Dörrenberg J, Brandstetter L, Gradl J

pubmed logopapersJun 3 2025
The objective of this study was to assess the performance of an artificial intelligence (AI) algorithm in detecting intracranial haemorrhages (ICHs) on non-contrast CT scans (NCCT). Another objective was to gauge the department's acceptance of said algorithm. Surveys conducted at three and nine months post-implementation revealed an increase in radiologists' acceptance of the AI tool with an increasing performance. However, a significant portion still preferred an additional physician given comparable cost. Our findings emphasize the importance of careful software implementation into a robust IT architecture.

Deep learning reveals pathology-confirmed neuroimaging signatures in Alzheimer's, vascular and Lewy body dementias.

Wang D, Honnorat N, Toledo JB, Li K, Charisis S, Rashid T, Benet Nirmala A, Brandigampala SR, Mojtabai M, Seshadri S, Habes M

pubmed logopapersJun 3 2025
Concurrent neurodegenerative and vascular pathologies pose a diagnostic challenge in the clinical setting, with histopathology remaining the definitive modality for dementia-type diagnosis. To address this clinical challenge, we introduce a neuropathology-based, data-driven, multi-label deep-learning framework to identify and quantify in vivo biomarkers for Alzheimer's disease (AD), vascular dementia (VD) and Lewy body dementia (LBD) using antemortem T1-weighted MRI scans of 423 demented and 361 control participants from National Alzheimer's Coordinating Center and Alzheimer's Disease Neuroimaging Initiative datasets. Based on the best-performing deep-learning model, explainable heat maps were extracted to visualize disease patterns, and the novel Deep Signature of Pathology Atrophy REcognition (DeepSPARE) indices were developed, where a higher DeepSPARE score indicates more brain alterations associated with that specific pathology. A substantial discrepancy in clinical and neuropathological diagnosis was observed in the demented patients: 71% had more than one pathology, but 67% were diagnosed clinically as AD only. Based on these neuropathological diagnoses and leveraging cross-validation principles, the deep-learning model achieved the best performance, with a balanced accuracy of 0.844, 0.839 and 0.623 for AD, VD and LBD, respectively, and was used to generate the explainable deep-learning heat maps and DeepSPARE indices. The explainable deep-learning heat maps revealed distinct neuroimaging brain alteration patterns for each pathology: (i) the AD heat map highlighted bilateral hippocampal regions; (ii) the VD heat map emphasized white matter regions; and (iii) the LBD heat map exposed occipital alterations. The DeepSPARE indices were validated by examining their associations with cognitive testing and neuropathological and neuroimaging measures using linear mixed-effects models. The DeepSPARE-AD index was associated with Mini-Mental State Examination, the Trail Making Test B, memory, hippocampal volume, Braak stages, Consortium to Establish a Registry for Alzheimer's Disease (CERAD) scores and Thal phases [false-discovery rate (FDR)-adjusted P < 0.05]. The DeepSPARE-VD index was associated with white matter hyperintensity volume and cerebral amyloid angiopathy (FDR-adjusted P < 0.001), and the DeepSPARE-LBD index was associated with Lewy body stages (FDR-adjusted P < 0.05). The findings were replicated in an out-of-sample Alzheimer's Disease Neuroimaging Initiative dataset by testing associations with cognitive, imaging, plasma and CSF measures. CSF and plasma tau phosphorylated at threonine-181 (pTau181) were significantly associated with DeepSPARE-AD in the AD and mild cognitive impairment amyloid-β positive (AD/MCIΑβ+) group (FDR-adjusted P < 0.001), and CSF α-synuclein was associated solely with DeepSPARE-LBD (FDR-adjusted P = 0.036). Overall, these findings demonstrate the advantages of our innovative deep-learning framework in detecting antemortem neuroimaging signatures linked to different pathologies. The newly deep-learning-derived DeepSPARE indices are precise, pathology-sensitive and single-valued non-invasive neuroimaging metrics, bridging the traditional widely available in vivo T1 imaging with histopathology.

Modelling pathological spread through the structural connectome in the frontotemporal dementia clinical spectrum.

Agosta F, Basaia S, Spinelli EG, Facente F, Lumaca L, Ghirelli A, Canu E, Castelnovo V, Sibilla E, Tripodi C, Freri F, Cecchetti G, Magnani G, Caso F, Verde F, Ticozzi N, Silani V, Caroppo P, Prioni S, Villa C, Tremolizzo L, Appollonio I, Raj A, Filippi M

pubmed logopapersJun 3 2025
The ability to predict the spreading of pathology in patients with frontotemporal dementia (FTD) is crucial for early diagnosis and targeted interventions. In this study, we examined the relationship between network vulnerability and longitudinal progression of atrophy in FTD patients, using the network diffusion model (NDM) of the spread of pathology. Thirty behavioural variant FTD (bvFTD), 13 semantic variant primary progressive aphasia (svPPA), 14 non-fluent variant primary progressive aphasia (nfvPPA) and 12 semantic behavioural variant FTD (sbvFTD) patients underwent longitudinal T1-weighted MRI. Fifty young controls (20-31 years of age) underwent multi-shell diffusion MRI scan. An NDM was developed to model progression of FTD pathology as a spreading process from a seed through the healthy structural connectome, using connectivity measures from fractional anisotropy and intracellular volume fraction in young controls. Four disease epicentres were initially identified from the peaks of atrophy of each FTD variant: left insula (bvFTD), left temporal pole (svPPA), right temporal pole (sbvFTD) and left supplementary motor area (nfvPPA). Pearson's correlations were calculated between NDM-predicted atrophy in young controls and the observed longitudinal atrophy in FTD patients over a follow-up period of 24 months. The NDM was then run for all 220 brain seeds to verify whether the four epicentres were among those that yielded the highest correlation. Using the NDM, predictive maps in young controls showed progression of pathology from the peaks of atrophy in svPPA, nfvPPA and sbvFTD over 24 months. svPPA exhibited early involvement of the left temporal and occipital lobes, progressing to extensive left hemisphere impairment. nfvPPA and sbvFTD spread in a similar manner bilaterally to frontal, sensorimotor and temporal regions, with sbvFTD additionally affecting the right hemisphere. Moreover, the NDM-predicted atrophy of each region was positively correlated with longitudinal real atrophy, with a greater effect in svPPA and sbvFTD. In bvFTD, the model starting from the left insula (the peak of atrophy) demonstrated a highly left-lateralized pattern, with pathology spreading to frontal, sensorimotor, temporal and basal ganglia regions, with minimal extension to the contralateral hemisphere by 24 months. However, unlike the atrophy peaks observed in the other three phenotypes, the left insula did not show the strongest correlation between the estimated and real atrophy. Instead, the bilateral superior frontal gyrus emerged as optimal seeds for modelling atrophy spread, showing the highest correlation ranking in both hemispheres. Overall, NDM applied on the intracellular volume fraction connectome yielded higher correlations relative to NDM applied on fractional anisotropy maps. The NDM implementation using the cross-sectional structural connectome is a valuable tool to predict patterns of atrophy and spreading of pathology in FTD clinical variants.
Page 36 of 1421417 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.