The dosimetric impacts of ct-based deep learning autocontouring algorithm for prostate cancer radiotherapy planning dosimetric accuracy of DirectORGANS.
Authors
Affiliations (3)
Affiliations (3)
- Department of Radiation Oncology, Faculty of Medicine School of Gazi University, Ankara, Turkey. [email protected].
- Department of Radiation Oncology, Gulhane Training and Research Hospital, Ankara, Turkey.
- Department of Radiation Oncology, Faculty of Medicine School of Gazi University, Ankara, Turkey.
Abstract
In study, we aimed to dosimetrically evaluate the usability of a new generation autocontouring algorithm (DirectORGANS) that automatically identifies organs and contours them directly in the computed tomography (CT) simulator before creating prostate radiotherapy plans. The CT images of 10 patients were used in this study. The prostates, bladder, rectum, and femoral heads of 10 patients were automatically contoured based on DirectORGANS algorithm at the CT simulator. On the same CT image sets, the same target volumes and contours of organs at risk were manually contoured by an experienced physician using MRI images and used as a reference structure. The doses of manually delineated contours of the target volume and organs at risk and the doses of auto contours of the target volume and organs at risk were obtained from the dose volume histogram of the same plan. Conformity index (CI) and homogeneity index (HI) were calculated to evaluate the target volumes. In critical organ structures, V<sub>60,</sub> V<sub>65,</sub> V<sub>70</sub> for the rectum, V<sub>65,</sub> V70, V75, and V<sub>80</sub> for the bladder, and maximum doses for femoral heads were evaluated. The Mann-Whitney U test was used for statistical comparison with statistical package SPSS (P < 0.05). Compared to the doses of the manual contours (MC) with auto contours (AC), there was no significant difference between the doses of the organs at risk. However, there were statistically significant differences between HI and CI values due to differences in prostate contouring (P < 0.05). The study showed that the need for clinicians to edit target volumes using MRI before treatment planning. However, it demonstrated that delineating organs at risk was used safely without the need for correction. DirectORGANS algorithm is suitable for use in RT planning to minimize differences between physicians and shorten the duration of this contouring step.