Sort by:
Page 32 of 82813 results

A novel UNet-SegNet and vision transformer architectures for efficient segmentation and classification in medical imaging.

Tongbram S, Shimray BA, Singh LS

pubmed logopapersJul 8 2025
Medical imaging has become an essential tool in the diagnosis and treatment of various diseases, and provides critical insights through ultrasound, MRI, and X-ray modalities. Despite its importance, challenges remain in the accurate segmentation and classification of complex structures owing to factors such as low contrast, noise, and irregular anatomical shapes. This study addresses these challenges by proposing a novel hybrid deep learning model that integrates the strengths of Convolutional Autoencoders (CAE), UNet, and SegNet architectures. In the preprocessing phase, a Convolutional Autoencoder is used to effectively reduce noise while preserving essential image details, ensuring that the images used for segmentation and classification are of high quality. The ability of CAE to denoise images while retaining critical features enhances the accuracy of the subsequent analysis. The developed model employs UNet for multiscale feature extraction and SegNet for precise boundary reconstruction, with Dynamic Feature Fusion integrated at each skip connection to dynamically weight and combine the feature maps from the encoder and decoder. This ensures that both global and local features are effectively captured, while emphasizing the critical regions for segmentation. To further enhance the model's performance, the Hybrid Emperor Penguin Optimizer (HEPO) was employed for feature selection, while the Hybrid Vision Transformer with Convolutional Embedding (HyViT-CE) was used for the classification task. This hybrid approach allows the model to maintain high accuracy across different medical imaging tasks. The model was evaluated using three major datasets: brain tumor MRI, breast ultrasound, and chest X-rays. The results demonstrate exceptional performance, achieving an accuracy of 99.92% for brain tumor segmentation, 99.67% for breast cancer detection, and 99.93% for chest X-ray classification. These outcomes highlight the ability of the model to deliver reliable and accurate diagnostics across various medical contexts, underscoring its potential as a valuable tool in clinical settings. The findings of this study will contribute to advancing deep learning applications in medical imaging, addressing existing research gaps, and offering a robust solution for improved patient care.

A Meta-Analysis of the Diagnosis of Condylar and Mandibular Fractures Based on 3-dimensional Imaging and Artificial Intelligence.

Wang F, Jia X, Meiling Z, Oscandar F, Ghani HA, Omar M, Li S, Sha L, Zhen J, Yuan Y, Zhao B, Abdullah JY

pubmed logopapersJul 8 2025
This article aims to review the literature, study the current situation of using 3D images and artificial intelligence-assisted methods to improve the rapid and accurate classification and diagnosis of condylar fractures and conduct a meta-analysis of mandibular fractures. Mandibular condyle fracture is a common fracture type in maxillofacial surgery. Accurate classification and diagnosis of condylar fractures are critical to developing an effective treatment plan. With the rapid development of 3-dimensional imaging technology and artificial intelligence (AI), traditional x-ray diagnosis is gradually replaced by more accurate technologies such as 3-dimensional computed tomography (CT). These emerging technologies provide more detailed anatomic information and significantly improve the accuracy and efficiency of condylar fracture diagnosis, especially in the evaluation and surgical planning of complex fractures. The application of artificial intelligence in medical imaging is further analyzed, especially the successful cases of fracture detection and classification through deep learning models. Although AI technology has demonstrated great potential in condylar fracture diagnosis, it still faces challenges such as data quality, model interpretability, and clinical validation. This article evaluates the accuracy and practicality of AI in diagnosing mandibular fractures through a systematic review and meta-analysis of the existing literature. The results show that AI-assisted diagnosis has high prediction accuracy in detecting condylar fractures and significantly improves diagnostic efficiency. However, more multicenter studies are still needed to verify the application of AI in different clinical settings to promote its widespread application in maxillofacial surgery.

Just Say Better or Worse: A Human-AI Collaborative Framework for Medical Image Segmentation Without Manual Annotations

Yizhe Zhang

arxiv logopreprintJul 8 2025
Manual annotation of medical images is a labor-intensive and time-consuming process, posing a significant bottleneck in the development and deployment of robust medical imaging AI systems. This paper introduces a novel Human-AI collaborative framework for medical image segmentation that substantially reduces the annotation burden by eliminating the need for explicit manual pixel-level labeling. The core innovation lies in a preference learning paradigm, where human experts provide minimal, intuitive feedback -- simply indicating whether an AI-generated segmentation is better or worse than a previous version. The framework comprises four key components: (1) an adaptable foundation model (FM) for feature extraction, (2) label propagation based on feature similarity, (3) a clicking agent that learns from human better-or-worse feedback to decide where to click and with which label, and (4) a multi-round segmentation learning procedure that trains a state-of-the-art segmentation network using pseudo-labels generated by the clicking agent and FM-based label propagation. Experiments on three public datasets demonstrate that the proposed approach achieves competitive segmentation performance using only binary preference feedback, without requiring experts to directly manually annotate the images.

Capsule-ConvKAN: A Hybrid Neural Approach to Medical Image Classification

Laura Pituková, Peter Sinčák, László József Kovács

arxiv logopreprintJul 8 2025
This study conducts a comprehensive comparison of four neural network architectures: Convolutional Neural Network, Capsule Network, Convolutional Kolmogorov--Arnold Network, and the newly proposed Capsule--Convolutional Kolmogorov--Arnold Network. The proposed Capsule-ConvKAN architecture combines the dynamic routing and spatial hierarchy capabilities of Capsule Network with the flexible and interpretable function approximation of Convolutional Kolmogorov--Arnold Networks. This novel hybrid model was developed to improve feature representation and classification accuracy, particularly in challenging real-world biomedical image data. The architectures were evaluated on a histopathological image dataset, where Capsule-ConvKAN achieved the highest classification performance with an accuracy of 91.21\%. The results demonstrate the potential of the newly introduced Capsule-ConvKAN in capturing spatial patterns, managing complex features, and addressing the limitations of traditional convolutional models in medical image classification.

Mamba Goes HoME: Hierarchical Soft Mixture-of-Experts for 3D Medical Image Segmentation

Szymon Płotka, Maciej Chrabaszcz, Gizem Mert, Ewa Szczurek, Arkadiusz Sitek

arxiv logopreprintJul 8 2025
In recent years, artificial intelligence has significantly advanced medical image segmentation. However, challenges remain, including efficient 3D medical image processing across diverse modalities and handling data variability. In this work, we introduce Hierarchical Soft Mixture-of-Experts (HoME), a two-level token-routing layer for efficient long-context modeling, specifically designed for 3D medical image segmentation. Built on the Mamba state-space model (SSM) backbone, HoME enhances sequential modeling through sparse, adaptive expert routing. The first stage employs a Soft Mixture-of-Experts (SMoE) layer to partition input sequences into local groups, routing tokens to specialized per-group experts for localized feature extraction. The second stage aggregates these outputs via a global SMoE layer, enabling cross-group information fusion and global context refinement. This hierarchical design, combining local expert routing with global expert refinement improves generalizability and segmentation performance, surpassing state-of-the-art results across datasets from the three most commonly used 3D medical imaging modalities and data quality.

Adaptive batch-fusion self-supervised learning for ultrasound image pretraining.

Zhang J, Wu X, Liu S, Fan Y, Chen Y, Lyu G, Liu P, Liu Z, He S

pubmed logopapersJul 8 2025
Medical self-supervised learning eliminates the reliance on labels, making feature extraction simple and efficient. The intricate design of pretext tasks in single-modal self-supervised analysis presents challenges, however, compounded by an excessive dependency on data augmentation, leading to a bottleneck in medical self-supervised learning research. Consequently, this paper reanalyzes the feature learnability introduced by data augmentation strategies in medical image self-supervised learning. We introduce an adaptive self-supervised learning data augmentation method from the perspective of batch fusion. Moreover, we propose a conv embedding block for learning the incremental representation between these batches. We tested 5 fused data tasks proposed by previous researchers and it achieved a linear classification protocol accuracy of 94.25% with only 150 self-supervised feature training in Vision Transformer(ViT), which is the best among the same methods. With a detailed ablation study on previous augmentation strategies, the results indicate that the proposed medical data augmentation strategy in this paper effectively represents ultrasound data features in the self-supervised learning process. The code and weights could be found at here.

The correlation of liquid biopsy genomic data to radiomics in colon, pancreatic, lung and prostatic cancer patients.

Italiano A, Gautier O, Dupont J, Assi T, Dawi L, Lawrance L, Bone A, Jardali G, Choucair A, Ammari S, Bayle A, Rouleau E, Cournede PH, Borget I, Besse B, Barlesi F, Massard C, Lassau N

pubmed logopapersJul 8 2025
With the advances in artificial intelligence (AI) and precision medicine, radiomics has emerged as a promising tool in the field of oncology. Radiogenomics integrates radiomics with genomic data, potentially offering a non-invasive method for identifying biomarkers relevant to cancer therapy. Liquid biopsy (LB) has further revolutionized cancer diagnostics by detecting circulating tumor DNA (ctDNA), enabling real-time molecular profiling. This study explores the integration of radiomics and LB to predict genomic alterations in solid tumors, including lung, colon, pancreatic, and prostate cancers. A retrospective study was conducted on 418 patients from the STING trial (NCT04932525), all of whom underwent both LB and CT imaging. Predictive models were developed using an XGBoost logistic classifier, with statistical analysis performed to compare tumor volumes, lesion counts, and affected organs across molecular subtypes. Performance was evaluated using area under the curve (AUC) values and cross-validation techniques. Radiomic models demonstrated moderate-to-good performance in predicting genomic alterations. KRAS mutations were best identified in pancreatic cancer (AUC=0.97), while moderate discrimination was noted in lung (AUC=0.66) and colon cancer (AUC=0.64). EGFR mutations in lung cancer were detected with an AUC of 0.74, while BRAF mutations showed good discriminatory ability in both lung (AUC=0.79) and colon cancer (AUC=0.76). In the radiomics predictive model, AR mutations in prostate cancer showed limited discrimination (AUC = 0.63). This study highlights the feasibility of integrating radiomics and LB for non-invasive genomic profiling in solid tumors, demonstrating significant potential in patient stratification and personalized oncology care. While promising, further prospective validation is required to enhance the generalizability of these models.

A confidence-guided Unsupervised domain adaptation network with pseudo-labeling and deformable CNN-transformer for medical image segmentation.

Zhou J, Xu Y, Liu Z, Pfaender F, Liu W

pubmed logopapersJul 8 2025
Unsupervised domain adaptation (UDA) methods have achieved significant progress in medical image segmentation. Nevertheless, the significant differences between the source and target domains remain a daunting barrier, creating an urgent need for more robust cross-domain solutions. Current UDA techniques generally employ a fixed, unvarying feature alignment procedure to reduce inter-domain differences throughout the training process. This rigidity disregards the shifting nature of feature distributions throughout the training process, leading to suboptimal performance in boundary delineation and detail retention on the target domain. A novel confidence-guided unsupervised domain adaptation network (CUDA-Net) is introduced to overcome persistent domain gaps, adapt to shifting feature distributions during training, and enhance boundary delineation in the target domain. This proposed network adaptively aligns features by tracking cross-domain distribution shifts throughout training, starting with adversarial alignment at early stages (coarse) and transitioning to pseudo-label-driven alignment at later stages (fine-grained), thereby leading to more accurate segmentation in the target domain. A confidence-weighted mechanism then refines these pseudo labels by prioritizing high-confidence regions while allowing low-confidence areas to be gradually explored, thereby enhancing both label reliability and overall model stability. Experiments on three representative medical image datasets, namely MMWHS17, BraTS2021, and VS-Seg, confirm the superiority of CUDA-Net. Notably, CUDA-Net outperforms eight leading methods in terms of overall segmentation accuracy (Dice) and boundary extraction precision (ASD), highlighting that it offers an efficient and reliable solution for cross-domain medical image segmentation.

Noise-inspired diffusion model for generalizable low-dose CT reconstruction.

Gao Q, Chen Z, Zeng D, Zhang J, Ma J, Shan H

pubmed logopapersJul 8 2025
The generalization of deep learning-based low-dose computed tomography (CT) reconstruction models to doses unseen in the training data is important and remains challenging. Previous efforts heavily rely on paired data to improve the generalization performance and robustness through collecting either diverse CT data for re-training or a few test data for fine-tuning. Recently, diffusion models have shown promising and generalizable performance in low-dose CT (LDCT) reconstruction, however, they may produce unrealistic structures due to the CT image noise deviating from Gaussian distribution and imprecise prior information from the guidance of noisy LDCT images. In this paper, we propose a noise-inspired diffusion model for generalizable LDCT reconstruction, termed NEED, which tailors diffusion models for noise characteristics of each domain. First, we propose a novel shifted Poisson diffusion model to denoise projection data, which aligns the diffusion process with the noise model in pre-log LDCT projections. Second, we devise a doubly guided diffusion model to refine reconstructed images, which leverages LDCT images and initial reconstructions to more accurately locate prior information and enhance reconstruction fidelity. By cascading these two diffusion models for dual-domain reconstruction, our NEED requires only normal-dose data for training and can be effectively extended to various unseen dose levels during testing via a time step matching strategy. Extensive qualitative, quantitative, and segmentation-based evaluations on two datasets demonstrate that our NEED consistently outperforms state-of-the-art methods in reconstruction and generalization performance. Source code is made available at https://github.com/qgao21/NEED.

A Unified Platform for Radiology Report Generation and Clinician-Centered AI Evaluation

Ma, Z., Yang, X., Atalay, Z., Yang, A., Collins, S., Bai, H., Bernstein, M., Baird, G., Jiao, Z.

medrxiv logopreprintJul 8 2025
Generative AI models have demonstrated strong potential in radiology report generation, but their clinical adoption depends on physician trust. In this study, we conducted a radiology-focused Turing test to evaluate how well attendings and residents distinguish AI-generated reports from those written by radiologists, and how their confidence and decision time reflect trust. we developed an integrated web-based platform comprising two core modules: Report Generation and Report Evaluation. Using the web-based platform, eight participants evaluated 48 anonymized X-ray cases, each paired with two reports from three comparison groups: radiologist vs. AI model 1, radiologist vs. AI model 2, and AI model 1 vs. AI model 2. Participants selected the AI-generated report, rated their confidence, and indicated report preference. Attendings outperformed residents in identifying AI-generated reports (49.9% vs. 41.1%) and exhibited longer decision times, suggesting more deliberate judgment. Both groups took more time when both reports were AI-generated. Our findings highlight the role of clinical experience in AI acceptance and the need for design strategies that foster trust in clinical applications. The project page of the evaluation platform is available at: https://zachatalay89.github.io/Labsite.
Page 32 of 82813 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.