Sort by:
Page 32 of 41408 results

Privacy-Preserving Chest X-ray Report Generation via Multimodal Federated Learning with ViT and GPT-2

Md. Zahid Hossain, Mustofa Ahmed, Most. Sharmin Sultana Samu, Md. Rakibul Islam

arxiv logopreprintMay 27 2025
The automated generation of radiology reports from chest X-ray images holds significant promise in enhancing diagnostic workflows while preserving patient privacy. Traditional centralized approaches often require sensitive data transfer, posing privacy concerns. To address this, the study proposes a Multimodal Federated Learning framework for chest X-ray report generation using the IU-Xray dataset. The system utilizes a Vision Transformer (ViT) as the encoder and GPT-2 as the report generator, enabling decentralized training without sharing raw data. Three Federated Learning (FL) aggregation strategies: FedAvg, Krum Aggregation and a novel Loss-aware Federated Averaging (L-FedAvg) were evaluated. Among these, Krum Aggregation demonstrated superior performance across lexical and semantic evaluation metrics such as ROUGE, BLEU, BERTScore and RaTEScore. The results show that FL can match or surpass centralized models in generating clinically relevant and semantically rich radiology reports. This lightweight and privacy-preserving framework paves the way for collaborative medical AI development without compromising data confidentiality.

China Protocol for early screening, precise diagnosis, and individualized treatment of lung cancer.

Wang C, Chen B, Liang S, Shao J, Li J, Yang L, Ren P, Wang Z, Luo W, Zhang L, Liu D, Li W

pubmed logopapersMay 27 2025
Early screening, diagnosis, and treatment of lung cancer are pivotal in clinical practice since the tumor stage remains the most dominant factor that affects patient survival. Previous initiatives have tried to develop new tools for decision-making of lung cancer. In this study, we proposed the China Protocol, a complete workflow of lung cancer tailored to the Chinese population, which is implemented by steps including early screening by evaluation of risk factors and three-dimensional thin-layer image reconstruction technique for low-dose computed tomography (Tre-LDCT), accurate diagnosis via artificial intelligence (AI) and novel biomarkers, and individualized treatment through non-invasive molecule visualization strategies. The application of this protocol has improved the early diagnosis and 5-year survival rates of lung cancer in China. The proportion of early-stage (stage I) lung cancer has increased from 46.3% to 65.6%, along with a 5-year survival rate of 90.4%. Moreover, especially for stage IA1 lung cancer, the diagnosis rate has improved from 16% to 27.9%; meanwhile, the 5-year survival rate of this group achieved 97.5%. Thus, here we defined stage IA1 lung cancer, which cohort benefits significantly from early diagnosis and treatment, as the "ultra-early stage lung cancer", aiming to provide an intuitive description for more precise management and survival improvement. In the future, we will promote our findings to multicenter remote areas through medical alliances and mobile health services with the desire to move forward the diagnosis and treatment of lung cancer.

Development and validation of a CT-based radiomics machine learning model for differentiating immune-related interstitial pneumonia.

Luo T, Guo J, Xi J, Luo X, Fu Z, Chen W, Huang D, Chen K, Xiao Q, Wei S, Wang Y, Du H, Liu L, Cai S, Dong H

pubmed logopapersMay 27 2025
Immune checkpoint inhibitor-related interstitial pneumonia (CIP) poses a diagnostic challenge due to its radiographic similarity to other pneumonias. We developed a non-invasive model using CT imaging to differentiate CIP from other pneumonias (OTP). We analyzed CIP and OTP patients after the immunotherapy from five medical centers between 2020 and 2023, and randomly divided into training and validation in 7:3. A radiomics model was developed using random forest analysis. A new model was then built by combining independent risk factors for CIP. The models were evaluated using ROC, calibration, and decision curve analysis. A total of 238 patients with pneumonia following immunotherapy were included, with 116 CIP and 122 OTP. After random allocation, the training cohort included 166 patients, and the validation included 72 patients. A radiomics model composed of 11 radiomic features was established using the random forest method, with an AUC of 0.833 for the training cohort and 0.821 for the validation. Univariate and multivariate logistic regression analysis revealed significant differences in smoking history, radiotherapy history, and radiomics score between CIP and OTP (p < 0.05). A new model was constructed based on these three factors and a nomogram was drawn. This model showed good calibration and net benefit in both the training and validation cohorts, with AUCs of 0.872 and 0.860, respectively. Using the random forest method of machine learning, we successfully constructed a CT-based radiomics CIP differential diagnostic model that can accurately, non-invasively, and rapidly provide clinicians with etiological support for pneumonia diagnosis.

Quantitative computed tomography imaging classification of cement dust-exposed patients-based Kolmogorov-Arnold networks.

Chau NK, Kim WJ, Lee CH, Chae KJ, Jin GY, Choi S

pubmed logopapersMay 27 2025
Occupational health assessment is critical for detecting respiratory issues caused by harmful exposures, such as cement dust. Quantitative computed tomography (QCT) imaging provides detailed insights into lung structure and function, enhancing the diagnosis of lung diseases. However, its high dimensionality poses challenges for traditional machine learning methods. In this study, Kolmogorov-Arnold networks (KANs) were used for the binary classification of QCT imaging data to assess respiratory conditions associated with cement dust exposure. The dataset comprised QCT images from 609 individuals, including 311 subjects exposed to cement dust and 298 healthy controls. We derived 141 QCT-based variables and employed KANs with two hidden layers of 15 and 8 neurons. The network parameters, including grid intervals, polynomial order, learning rate, and penalty strengths, were carefully fine-tuned. The performance of the model was assessed through various metrics, including accuracy, precision, recall, F1 score, specificity, and the Matthews Correlation Coefficient (MCC). A five-fold cross-validation was employed to enhance the robustness of the evaluation. SHAP analysis was applied to interpret the sensitive QCT features. The KAN model demonstrated consistently high performance across all metrics, with an average accuracy of 98.03 %, precision of 97.35 %, recall of 98.70 %, F1 score of 98.01 %, and specificity of 97.40 %. The MCC value further confirmed the robustness of the model in managing imbalanced datasets. The comparative analysis demonstrated that the KAN model outperformed traditional methods and other deep learning approaches, such as TabPFN, ANN, FT-Transformer, VGG19, MobileNets, ResNet101, XGBoost, SVM, random forest, and decision tree. SHAP analysis highlighted structural and functional lung features, such as airway geometry, wall thickness, and lung volume, as key predictors. KANs significantly improved the classification of QCT imaging data, enhancing early detection of cement dust-induced respiratory conditions. SHAP analysis supported model interpretability, enhancing its potential for clinical translation in occupational health assessments.

A Deep Neural Network Framework for the Detection of Bacterial Diseases from Chest X-Ray Scans.

Jain S, Jindal H, Bharti M

pubmed logopapersMay 27 2025
This research aims to develop an advanced deep-learning framework for detecting respiratory diseases, including COVID-19, pneumonia, and tuberculosis (TB), using chest X-ray scans. A Deep Neural Network (DNN)-based system was developed to analyze medical images and extract key features from chest X-rays. The system leverages various DNN learning algorithms to study X-ray scan color, curve, and edge-based features. The Adam optimizer is employed to minimize error rates and enhance model training. A dataset of 1800 chest X-ray images, consisting of COVID-19, pneumonia, TB, and typical cases, was evaluated across multiple DNN models. The highest accuracy was achieved using the VGG19 model. The proposed system demonstrated an accuracy of 94.72%, with a sensitivity of 92.73%, a specificity of 96.68%, and an F1-score of 94.66%. The error rate was 5.28% when trained with 80% of the dataset and tested on 20%. The VGG19 model showed significant accuracy improvements of 32.69%, 36.65%, 42.16%, and 8.1% over AlexNet, GoogleNet, InceptionV3, and VGG16, respectively. The prediction time was also remarkably low, ranging between 3 and 5 seconds. The proposed deep learning model efficiently detects respiratory diseases, including COVID-19, pneumonia, and TB, within seconds. The method ensures high reliability and efficiency by optimizing feature extraction and maintaining system complexity, making it a valuable tool for clinicians in rapid disease diagnosis.

Machine learning-driven imaging data for early prediction of lung toxicity in breast cancer radiotherapy.

Ungvári T, Szabó D, Győrfi A, Dankovics Z, Kiss B, Olajos J, Tőkési K

pubmed logopapersMay 27 2025
One possible adverse effect of breast irradiation is the development of pulmonary fibrosis. The aim of this study was to determine whether planning CT scans can predict which patients are more likely to develop lung lesions after treatment. A retrospective analysis of 242 patient records was performed using different machine learning models. These models showed a remarkable correlation between the occurrence of fibrosis and the hounsfield units of lungs in CT data. Three different classification methods (Tree, Kernel-based, k-Nearest Neighbors) showed predictive values above 60%. The human predictive factor (HPF), a mathematical predictive model, further strengthened the association between lung hounsfield unit (HU) metrics and radiation-induced lung injury (RILI). These approaches optimize radiation treatment plans to preserve lung health. Machine learning models and HPF can also provide effective diagnostic and therapeutic support for other diseases.

Deep Learning for Pneumonia Diagnosis: A Custom CNN Approach with Superior Performance on Chest Radiographs

Mehta, A., Vyas, M.

medrxiv logopreprintMay 26 2025
A major global health and wellness issue causing major health problems and death, pneumonia underlines the need of quickly and precisely identifying and treating it. Though imaging technology has advanced, radiologists manual reading of chest X-rays still constitutes the basic method for pneumonia detection, which causes delays in both treatment and medical diagnosis. This study proposes a pneumonia detection method to automate the process using deep learning techniques. The concept employs a bespoke convolutional neural network (CNN) trained on different pneumonia-positive and pneumonia-negative cases from several healthcare providers. Various pre-processing steps were done on the chest radiographs to increase integrity and efficiency before teaching the design. Based on the comparison study with VGG19, ResNet50, InceptionV3, DenseNet201, and MobileNetV3, our bespoke CNN model was discovered to be the most efficient in balancing accuracy, recall, and parameter complexity. It shows 96.5% accuracy and 96.6% F1 score. This study contributes to the expansion of an automated, paired with a reliable, pneumonia finding system, which could improve personal outcomes and increase healthcare efficiency. The full project is available at here.

Can intraoperative improvement of radial endobronchial ultrasound imaging enhance the diagnostic yield in peripheral pulmonary lesions?

Nishida K, Ito T, Iwano S, Okachi S, Nakamura S, Chrétien B, Chen-Yoshikawa TF, Ishii M

pubmed logopapersMay 26 2025
Data regarding the diagnostic efficacy of radial endobronchial ultrasound (R-EBUS) findings obtained via transbronchial needle aspiration (TBNA)/biopsy (TBB) with endobronchial ultrasonography with a guide sheath (EBUS-GS) for peripheral pulmonary lesions (PPLs) are lacking. We evaluated whether intraoperative probe repositioning improves R-EBUS imaging and affects diagnostic yield and safety of EBUS-guided sampling for PPLs. We retrospectively studied 363 patients with PPLs who underwent TBNA/TBB (83 lesions) or TBB (280 lesions) using EBUS-GS. Based on the R-EBUS findings before and after these procedures, patients were categorized into three groups: the improved R-EBUS image (n = 52), unimproved R-EBUS image (n = 69), and initial within-lesion groups (n = 242). The impact of improved R-EBUS findings on diagnostic yield and complications was assessed using multivariable logistic regression, adjusting for lesion size, lesion location, and the presence of a bronchus leading to the lesion on CT. A separate exploratory random-forest model with SHAP analysis was used to explore factors associated with successful repositioning in lesions not initially "within." The diagnostic yield in the improved R-EBUS group was significantly higher than that in the unimproved R-EBUS group (76.9% vs. 46.4%, p = 0.001). The regression model revealed that the improvement in intraoperative R-EBUS findings was associated with a high diagnostic yield (odds ratio: 3.55, 95% confidence interval, 1.57-8.06, p = 0.002). Machine learning analysis indicated that inner lesion location and radiographic visibility were the most influential predictors of successful repositioning. The complication rates were similar across all groups (total complications: 5.8% vs. 4.3% vs. 6.2%, p = 0.943). Improved R-EBUS findings during TBNA/TBB or TBB with EBUS-GS were associated with a high diagnostic yield without an increase in complications, even when the initial R-EBUS findings were inadequate. This suggests that repeated intraoperative probe repositioning can safely boost outcomes.

Deep learning reconstruction combined with contrast-enhancement boost in dual-low dose CT pulmonary angiography: a two-center prospective trial.

Shen L, Lu J, Zhou C, Bi Z, Ye X, Zhao Z, Xu M, Zeng M, Wang M

pubmed logopapersMay 24 2025
To investigate whether the deep learning reconstruction (DLR) combined with contrast-enhancement-boost (CE-boost) technique can improve the diagnostic quality of CT pulmonary angiography (CTPA) at low radiation and contrast doses, compared with routine CTPA using hybrid iterative reconstruction (HIR). This prospective two-center study included 130 patients who underwent CTPA for suspected pulmonary embolism. Patients were randomly divided into two groups: the routine CTPA group, reconstructed using HIR; and the dual-low dose CTPA group, reconstructed using HIR and DLR, additionally combined with the CE-boost to generate HIR-boost and DLR-boost images. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of pulmonary arteries were quantitatively assessed. Two experienced radiologists independently ordered CT images (5, best; 1, worst) based on overall image noise and vascular contrast. Diagnostic performance for PE detection was calculated for each dataset. Patient demographics were similar between groups. Compared to HIR images of the routine group, DLR-boost images of the dual-low dose group were significantly better at qualitative scores (p < 0.001). The CT values of pulmonary arteries between the DLR-boost and the HIR images were comparable (p > 0.05), whereas the SNRs and CNRs of pulmonary arteries in the DLR-boost images were the highest among all five datasets (p < 0.001). The AUCs of DLR, HIR-boost, and DLR-boost were 0.933, 0.924, and 0.986, respectively (all p > 0.05). DLR combined with CE-boost technique can significantly improve the image quality of CTPA with reduced radiation and contrast doses, facilitating a more accurate diagnosis of pulmonary embolism. Question The dual-low dose protocol is essential for detecting pulmonary emboli (PE) in follow-up CT pulmonary angiography (PA), yet effective solutions are still lacking. Findings Deep learning reconstruction (DLR)-boost with reduced radiation and contrast doses demonstrated higher quantitative and qualitative image quality than hybrid-iterative reconstruction in the routine CTPA. Clinical relevance DLR-boost based low-radiation and low-contrast-dose CTPA protocol offers a novel strategy to further enhance the image quality and diagnosis accuracy for pulmonary embolism patients.
Page 32 of 41408 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.