Optimizing contrast-enhanced abdominal MRI: A comparative study of deep learning and standard VIBE techniques.
Herold A, Mercaldo ND, Anderson MA, Mojtahed A, Kilcoyne A, Lo WC, Sellers RM, Clifford B, Nickel MD, Nakrour N, Huang SY, Tsai LL, Catalano OA, Harisinghani MG
•papers•Aug 7 2025To validate a deep learning (DL) reconstruction technique for faster post-contrast enhanced coronal Volume Interpolated Breath-hold Examination (VIBE) sequences and assess its image quality compared to conventionally acquired coronal VIBE sequences. This prospective study included 151 patients undergoing clinically indicated upper abdominal MRI acquired on 3 T scanners. Two coronal T1 fat-suppressed VIBE sequences were acquired: a DL-reconstructed sequence (VIBE<sub>DL</sub>) and a standard sequence (VIBE<sub>SD</sub>). Three radiologists independently evaluated six image quality parameters: overall image quality, perceived signal-to-noise ratio, severity of artifacts, liver edge sharpness, liver vessel sharpness, and lesion conspicuity, using a 4-point Likert scale. Inter-reader agreement was assessed using Gwet's AC2. Ordinal mixed-effects regression models were used to compare VIBE<sub>DL</sub> and VIBE<sub>SD</sub>. Acquisition times were 10.2 s for VIBE<sub>DL</sub> compared to 22.3 s for VIBE<sub>SD</sub>. VIBE<sub>DL</sub> demonstrated superior overall image quality (OR 1.95, 95 % CI: 1.44-2.65, p < 0.001), reduced image noise (OR 3.02, 95 % CI: 2.26-4.05, p < 0.001), enhanced liver edge sharpness (OR 3.68, 95 % CI: 2.63-5.15, p < 0.001), improved liver vessel sharpness (OR 4.43, 95 % CI: 3.13-6.27, p < 0.001), and better lesion conspicuity (OR 9.03, 95 % CI: 6.34-12.85, p < 0.001) compared to VIBE<sub>SD</sub>. However, VIBE<sub>DL</sub> showed increased severity of peripheral artifacts (OR 0.13, p < 0.001). VIBE<sub>DL</sub> detected 137/138 (99.3 %) focal liver lesions, while VIBE<sub>SD</sub> detected 131/138 (94.9 %). Inter-reader agreement ranged from good to very good for both sequences. The DL-reconstructed VIBE sequence significantly outperformed the standard breath-hold VIBE in image quality and lesion detection, while reducing acquisition time. This technique shows promise for enhancing the diagnostic capabilities of contrast-enhanced abdominal MRI.