Sort by:
Page 28 of 31309 results

UGoDIT: Unsupervised Group Deep Image Prior Via Transferable Weights

Shijun Liang, Ismail R. Alkhouri, Siddhant Gautam, Qing Qu, Saiprasad Ravishankar

arxiv logopreprintMay 16 2025
Recent advances in data-centric deep generative models have led to significant progress in solving inverse imaging problems. However, these models (e.g., diffusion models (DMs)) typically require large amounts of fully sampled (clean) training data, which is often impractical in medical and scientific settings such as dynamic imaging. On the other hand, training-data-free approaches like the Deep Image Prior (DIP) do not require clean ground-truth images but suffer from noise overfitting and can be computationally expensive as the network parameters need to be optimized for each measurement set independently. Moreover, DIP-based methods often overlook the potential of learning a prior using a small number of sub-sampled measurements (or degraded images) available during training. In this paper, we propose UGoDIT, an Unsupervised Group DIP via Transferable weights, designed for the low-data regime where only a very small number, M, of sub-sampled measurement vectors are available during training. Our method learns a set of transferable weights by optimizing a shared encoder and M disentangled decoders. At test time, we reconstruct the unseen degraded image using a DIP network, where part of the parameters are fixed to the learned weights, while the remaining are optimized to enforce measurement consistency. We evaluate UGoDIT on both medical (multi-coil MRI) and natural (super resolution and non-linear deblurring) image recovery tasks under various settings. Compared to recent standalone DIP methods, UGoDIT provides accelerated convergence and notable improvement in reconstruction quality. Furthermore, our method achieves performance competitive with SOTA DM-based and supervised approaches, despite not requiring large amounts of clean training data.

FlowMRI-Net: A Generalizable Self-Supervised 4D Flow MRI Reconstruction Network.

Jacobs L, Piccirelli M, Vishnevskiy V, Kozerke S

pubmed logopapersMay 16 2025
Image reconstruction from highly undersampled 4D flow MRI data can be very time consuming and may result in significant underestimation of velocities depending on regularization, thereby limiting the applicability of the method. The objective of the present work was to develop a generalizable self-supervised deep learning-based framework for fast and accurate reconstruction of highly undersampled 4D flow MRI and to demonstrate the utility of the framework for aortic and cerebrovascular applications. The proposed deep-learning-based framework, called FlowMRI-Net, employs physics-driven unrolled optimization using a complex-valued convolutional recurrent neural network and is trained in a self-supervised manner. The generalizability of the framework is evaluated using aortic and cerebrovascular 4D flow MRI acquisitions acquired on systems from two different vendors for various undersampling factors (R=8,16,24) and compared to compressed sensing (CS-LLR) reconstructions. Evaluation includes an ablation study and a qualitative and quantitative analysis of image and velocity magnitudes. FlowMRI-Net outperforms CS-LLR for aortic 4D flow MRI reconstruction, resulting in significantly lower vectorial normalized root mean square error and mean directional errors for velocities in the thoracic aorta. Furthermore, the feasibility of FlowMRI-Net's generalizability is demonstrated for cerebrovascular 4D flow MRI reconstruction. Reconstruction times ranged from 3 to 7minutes on commodity CPU/GPU hardware. FlowMRI-Net enables fast and accurate reconstruction of highly undersampled aortic and cerebrovascular 4D flow MRI, with possible applications to other vascular territories.

2.5D Multi-view Averaging Diffusion Model for 3D Medical Image Translation: Application to Low-count PET Reconstruction with CT-less Attenuation Correction.

Chen T, Hou J, Zhou Y, Xie H, Chen X, Liu Q, Guo X, Xia M, Duncan JS, Liu C, Zhou B

pubmed logopapersMay 15 2025
Positron Emission Tomography (PET) is an important clinical imaging tool but inevitably introduces radiation exposure to patients and healthcare providers. Reducing the tracer injection dose and eliminating the CT acquisition for attenuation correction can reduce the overall radiation dose, but often results in PET with high noise and bias. Thus, it is desirable to develop 3D methods to translate the non-attenuation-corrected low-dose PET (NAC-LDPET) into attenuation-corrected standard-dose PET (AC-SDPET). Recently, diffusion models have emerged as a new state-of-the-art deep learning method for image-to-image translation, better than traditional CNN-based methods. However, due to the high computation cost and memory burden, it is largely limited to 2D applications. To address these challenges, we developed a novel 2.5D Multi-view Averaging Diffusion Model (MADM) for 3D image-to-image translation with application on NAC-LDPET to AC-SDPET translation. Specifically, MADM employs separate diffusion models for axial, coronal, and sagittal views, whose outputs are averaged in each sampling step to ensure the 3D generation quality from multiple views. To accelerate the 3D sampling process, we also proposed a strategy to use the CNN-based 3D generation as a prior for the diffusion model. Our experimental results on human patient studies suggested that MADM can generate high-quality 3D translation images, outperforming previous CNN-based and Diffusion-based baseline methods. The code is available at https://github.com/tianqic/MADM.

Application of deep learning with fractal images to sparse-view CT.

Kawaguchi R, Minagawa T, Hori K, Hashimoto T

pubmed logopapersMay 15 2025
Deep learning has been widely used in research on sparse-view computed tomography (CT) image reconstruction. While sufficient training data can lead to high accuracy, collecting medical images is often challenging due to legal or ethical concerns, making it necessary to develop methods that perform well with limited data. To address this issue, we explored the use of nonmedical images for pre-training. Therefore, in this study, we investigated whether fractal images could improve the quality of sparse-view CT images, even with a reduced number of medical images. Fractal images generated by an iterated function system (IFS) were used for nonmedical images, and medical images were obtained from the CHAOS dataset. Sinograms were then generated using 36 projections in sparse-view and the images were reconstructed by filtered back-projection (FBP). FBPConvNet and WNet (first module: learning fractal images, second module: testing medical images, and third module: learning output) were used as networks. The effectiveness of pre-training was then investigated for each network. The quality of the reconstructed images was evaluated using two indices: structural similarity (SSIM) and peak signal-to-noise ratio (PSNR). The network parameters pre-trained with fractal images showed reduced artifacts compared to the network trained exclusively with medical images, resulting in improved SSIM. WNet outperformed FBPConvNet in terms of PSNR. Pre-training WNet with fractal images produced the best image quality, and the number of medical images required for main-training was reduced from 5000 to 1000 (80% reduction). Using fractal images for network training can reduce the number of medical images required for artifact reduction in sparse-view CT. Therefore, fractal images can improve accuracy even with a limited amount of training data in deep learning.

Ordered-subsets Multi-diffusion Model for Sparse-view CT Reconstruction

Pengfei Yu, Bin Huang, Minghui Zhang, Weiwen Wu, Shaoyu Wang, Qiegen Liu

arxiv logopreprintMay 15 2025
Score-based diffusion models have shown significant promise in the field of sparse-view CT reconstruction. However, the projection dataset is large and riddled with redundancy. Consequently, applying the diffusion model to unprocessed data results in lower learning effectiveness and higher learning difficulty, frequently leading to reconstructed images that lack fine details. To address these issues, we propose the ordered-subsets multi-diffusion model (OSMM) for sparse-view CT reconstruction. The OSMM innovatively divides the CT projection data into equal subsets and employs multi-subsets diffusion model (MSDM) to learn from each subset independently. This targeted learning approach reduces complexity and enhances the reconstruction of fine details. Furthermore, the integration of one-whole diffusion model (OWDM) with complete sinogram data acts as a global information constraint, which can reduce the possibility of generating erroneous or inconsistent sinogram information. Moreover, the OSMM's unsupervised learning framework provides strong robustness and generalizability, adapting seamlessly to varying sparsity levels of CT sinograms. This ensures consistent and reliable performance across different clinical scenarios. Experimental results demonstrate that OSMM outperforms traditional diffusion models in terms of image quality and noise resilience, offering a powerful and versatile solution for advanced CT imaging in sparse-view scenarios.

Dual-Domain deep prior guided sparse-view CT reconstruction with multi-scale fusion attention.

Wu J, Lin J, Jiang X, Zheng W, Zhong L, Pang Y, Meng H, Li Z

pubmed logopapersMay 15 2025
Sparse-view CT reconstruction is a challenging ill-posed inverse problem, where insufficient projection data leads to degraded image quality with increased noise and artifacts. Recent deep learning approaches have shown promising results in CT reconstruction. However, existing methods often neglect projection data constraints and rely heavily on convolutional neural networks, resulting in limited feature extraction capabilities and inadequate adaptability. To address these limitations, we propose a Dual-domain deep Prior-guided Multi-scale fusion Attention (DPMA) model for sparse-view CT reconstruction, aiming to enhance reconstruction accuracy while ensuring data consistency and stability. First, we establish a residual regularization strategy that applies constraints on the difference between the prior image and target image, effectively integrating deep learning-based priors with model-based optimization. Second, we develop a multi-scale fusion attention mechanism that employs parallel pathways to simultaneously model global context, regional dependencies, and local details in a unified framework. Third, we incorporate a physics-informed consistency module based on range-null space decomposition to ensure adherence to projection data constraints. Experimental results demonstrate that DPMA achieves improved reconstruction quality compared to existing approaches, particularly in noise suppression, artifact reduction, and fine detail preservation.

"MR Fingerprinting for Imaging Brain Hemodynamics and Oxygenation".

Coudert T, Delphin A, Barrier A, Barbier EL, Lemasson B, Warnking JM, Christen T

pubmed logopapersMay 15 2025
Over the past decade, several studies have explored the potential of magnetic resonance fingerprinting (MRF) for the quantification of brain hemodynamics, oxygenation, and perfusion. Recent advances in simulation models and reconstruction frameworks have also significantly enhanced the accuracy of vascular parameter estimation. This review provides an overview of key vascular MRF studies, emphasizing advancements in geometrical models for vascular simulations, novel sequences, and state-of-the-art reconstruction techniques incorporating machine learning and deep learning algorithms. Both pre-clinical and clinical applications are discussed. Based on these findings, we outline future directions and development areas that need to be addressed to facilitate their clinical translation. EVIDENCE LEVEL: N/A. TECHNICAL EFFICACY: Stage 1.

[Orthodontics in the CBCT era: 25 years later, what are the guidelines?].

Foucart JM, Papelard N, Bourriau J

pubmed logopapersMay 15 2025
CBCT has become an essential tool in orthodontics, although its use must remain judicious and evidence-based. This study provides an updated analysis of international recommendations concerning the use of CBCT in orthodontics, with a particular focus on clinical indications, radiation dose reduction, and recent technological advancements. A systematic review of guidelines published between 2015 and 2025 was conducted following the PRISMA methodology. Inclusion criteria comprised official directives from recognized scientific societies and clinical studies evaluating low dose protocols in orthodontics. The analysis of the 19 retained recommendations reveals a consensus regarding the primary indications for CBCT in orthodontics, particularly for impacted teeth, skeletal anomalies, periodontal and upper airways assessment. Dose optimization and the integration of artificial intelligence emerge as major advancements, enabling significant radiation reduction while preserving diagnostic accuracy. The development of low dose protocols and advanced reconstruction algorithms presents promising perspectives for safer and more efficient imaging, increasingly replacing conventional 2D radiographic techniques. However, an international harmonization of recommendations for these new imaging sequences is imperative to standardize clinical practices and enhance patient radioprotection.

Metal Suppression Magnetic Resonance Imaging Techniques in Orthopaedic and Spine Surgery.

Ziegeler K, Yoon D, Hoff M, Theologis AA

pubmed logopapersMay 15 2025
Implantation of metallic instrumentation is the mainstay of a variety of orthopaedic and spine surgeries. Postoperatively, imaging of the soft tissues around these implants is commonly required to assess for persistent, recurrent, and/or new pathology (ie, instrumentation loosening, particle disease, infection, neural compression); visualization of these pathologies often requires the superior soft-tissue contrast of magnetic resonance imaging (MRI). As susceptibility artifacts from ferromagnetic implants can result in unacceptable image quality, unique MRI approaches are often necessary to provide accurate imaging. In this text, a comprehensive review is provided on common artifacts encountered in orthopaedic MRI, including comparisons of artifacts from different metallic alloys and common nonpropriety/propriety MR metallic artifact reduction methods. The newest metal-artifact suppression imaging technology and future directions (ie, deep learning/artificial intelligence) in this important field will be considered.

A CVAE-based generative model for generalized B<sub>1</sub> inhomogeneity corrected chemical exchange saturation transfer MRI at 5 T.

Zhang R, Zhang Q, Wu Y

pubmed logopapersMay 15 2025
Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) has emerged as a powerful tool to image endogenous or exogenous macromolecules. CEST contrast highly depends on radiofrequency irradiation B<sub>1</sub> level. Spatial inhomogeneity of B<sub>1</sub> field would bias CEST measurement. Conventional interpolation-based B<sub>1</sub> correction method required CEST dataset acquisition under multiple B<sub>1</sub> levels, substantially prolonging scan time. The recently proposed supervised deep learning approach reconstructed B<sub>1</sub> inhomogeneity corrected CEST effect at the identical B<sub>1</sub> as of the training data, hindering its generalization to other B<sub>1</sub> levels. In this study, we proposed a Conditional Variational Autoencoder (CVAE)-based generative model to generate B<sub>1</sub> inhomogeneity corrected Z spectra from single CEST acquisition. The model was trained from pixel-wise source-target paired Z spectra under multiple B<sub>1</sub> with target B<sub>1</sub> as a conditional variable. Numerical simulation and healthy human brain imaging at 5 T were respectively performed to evaluate the performance of proposed model in B<sub>1</sub> inhomogeneity corrected CEST MRI. Results showed that the generated B<sub>1</sub>-corrected Z spectra agreed well with the reference averaged from regions with subtle B<sub>1</sub> inhomogeneity. Moreover, the performance of the proposed model in correcting B<sub>1</sub> inhomogeneity in APT CEST effect, as measured by both MTR<sub>asym</sub> and [Formula: see text] at 3.5 ppm, were superior over conventional Z/contrast-B<sub>1</sub>-interpolation and other deep learning methods, especially when target B<sub>1</sub> were not included in sampling or training dataset. In summary, the proposed model allows generalized B<sub>1</sub> inhomogeneity correction, benefiting quantitative CEST MRI in clinical routines.
Page 28 of 31309 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.