Sort by:
Page 24 of 3493484 results

MedAtlas: Evaluating LLMs for Multi-Round, Multi-Task Medical Reasoning Across Diverse Imaging Modalities and Clinical Text

Ronghao Xu, Zhen Huang, Yangbo Wei, Xiaoqian Zhou, Zikang Xu, Ting Liu, Zihang Jiang, S. Kevin Zhou

arxiv logopreprintAug 13 2025
Artificial intelligence has demonstrated significant potential in clinical decision-making; however, developing models capable of adapting to diverse real-world scenarios and performing complex diagnostic reasoning remains a major challenge. Existing medical multi-modal benchmarks are typically limited to single-image, single-turn tasks, lacking multi-modal medical image integration and failing to capture the longitudinal and multi-modal interactive nature inherent to clinical practice. To address this gap, we introduce MedAtlas, a novel benchmark framework designed to evaluate large language models on realistic medical reasoning tasks. MedAtlas is characterized by four key features: multi-turn dialogue, multi-modal medical image interaction, multi-task integration, and high clinical fidelity. It supports four core tasks: open-ended multi-turn question answering, closed-ended multi-turn question answering, multi-image joint reasoning, and comprehensive disease diagnosis. Each case is derived from real diagnostic workflows and incorporates temporal interactions between textual medical histories and multiple imaging modalities, including CT, MRI, PET, ultrasound, and X-ray, requiring models to perform deep integrative reasoning across images and clinical texts. MedAtlas provides expert-annotated gold standards for all tasks. Furthermore, we propose two novel evaluation metrics: Round Chain Accuracy and Error Propagation Resistance. Benchmark results with existing multi-modal models reveal substantial performance gaps in multi-stage clinical reasoning. MedAtlas establishes a challenging evaluation platform to advance the development of robust and trustworthy medical AI.

An optimized multi-task contrastive learning framework for HIFU lesion detection and segmentation.

Zavar M, Ghaffari HR, Tabatabaee H

pubmed logopapersAug 13 2025
Accurate detection and segmentation of lesions induced by High-Intensity Focused Ultrasound (HIFU) in medical imaging remain significant challenges in automated disease diagnosis. Traditional methods heavily rely on labeled data, which is often scarce, expensive, and time-consuming to obtain. Moreover, existing approaches frequently struggle with variations in medical data and the limited availability of annotated datasets, leading to suboptimal performance. To address these challenges, this paper introduces an innovative framework called the Optimized Multi-Task Contrastive Learning Framework (OMCLF), which leverages self-supervised learning (SSL) and genetic algorithms (GA) to enhance HIFU lesion detection and segmentation. OMCLF integrates classification and segmentation into a unified model, utilizing a shared backbone to extract common features. The framework systematically optimizes feature representations, hyperparameters, and data augmentation strategies tailored for medical imaging, ensuring that critical information, such as lesion details, is preserved. By employing a genetic algorithm, OMCLF explores and optimizes augmentation techniques suitable for medical data, avoiding distortions that could compromise diagnostic accuracy. Experimental results demonstrate that OMCLF outperforms single-task methods in both classification and segmentation tasks while significantly reducing dependency on labeled data. Specifically, OMCLF achieves an accuracy of 93.3% in lesion detection and a Dice score of 92.5% in segmentation, surpassing state-of-the-art methods such as SimCLR and MoCo. The proposed approach achieves superior accuracy in identifying and delineating HIFU-induced lesions, marking a substantial advancement in medical image interpretation and automated diagnosis. OMCLF represents a significant step forward in the evolutionary optimization of self-supervised learning, with potential applications across various medical imaging domains.

NEURAL: Attention-Guided Pruning for Unified Multimodal Resource-Constrained Clinical Evaluation

Devvrat Joshi, Islem Rekik

arxiv logopreprintAug 13 2025
The rapid growth of multimodal medical imaging data presents significant storage and transmission challenges, particularly in resource-constrained clinical settings. We propose NEURAL, a novel framework that addresses this by using semantics-guided data compression. Our approach repurposes cross-attention scores between the image and its radiological report from a fine-tuned generative vision-language model to structurally prune chest X-rays, preserving only diagnostically critical regions. This process transforms the image into a highly compressed, graph representation. This unified graph-based representation fuses the pruned visual graph with a knowledge graph derived from the clinical report, creating a universal data structure that simplifies downstream modeling. Validated on the MIMIC-CXR and CheXpert Plus dataset for pneumonia detection, NEURAL achieves a 93.4-97.7\% reduction in image data size while maintaining a high diagnostic performance of 0.88-0.95 AUC, outperforming other baseline models that use uncompressed data. By creating a persistent, task-agnostic data asset, NEURAL resolves the trade-off between data size and clinical utility, enabling efficient workflows and teleradiology without sacrificing performance. Our NEURAL code is available at https://github.com/basiralab/NEURAL.

ES-UNet: efficient 3D medical image segmentation with enhanced skip connections in 3D UNet.

Park M, Oh S, Park J, Jeong T, Yu S

pubmed logopapersAug 13 2025
Deep learning has significantly advanced medical image analysis, particularly in semantic segmentation, which is essential for clinical decisions. However, existing 3D segmentation models, like the traditional 3D UNet, face challenges in balancing computational efficiency and accuracy when processing volumetric medical data. This study aims to develop an improved architecture for 3D medical image segmentation with enhanced learning strategies to improve accuracy and address challenges related to limited training data. We propose ES-UNet, a 3D segmentation architecture that achieves superior segmentation performance while offering competitive efficiency across multiple computational metrics, including memory usage, inference time, and parameter count. The model builds upon the full-scale skip connection design of UNet3+ by integrating channel attention modules into each encoder-to-decoder path and incorporating full-scale deep supervision to enhance multi-resolution feature learning. We further introduce Region Specific Scaling (RSS), a data augmentation method that adaptively applies geometric transformations to annotated regions, and a Dynamically Weighted Dice (DWD) loss to improve the balance between precision and recall. The model was evaluated on the MICCAI HECKTOR dataset, and additional validation was conducted on selected tasks from the Medical Segmentation Decathlon (MSD). On the HECKTOR dataset, ES-UNet achieved a Dice Similarity Coefficient (DSC) of 76.87%, outperforming baseline models including 3D UNet, 3D UNet 3+, nnUNet, and Swin UNETR. Ablation studies showed that RSS and DWD contributed up to 1.22% and 1.06% improvement in DSC, respectively. A sensitivity analysis demonstrated that the chosen scaling range in RSS offered a favorable trade-off between deformation and anatomical plausibility. Cross-dataset evaluation on MSD Heart and Spleen tasks also indicated strong generalization. Computational analysis revealed that ES-UNet achieves superior segmentation performance with moderate computational demands. Specifically, the enhanced skip connection design with lightweight channel attention modules integrated throughout the network architecture enables this favorable balance between high segmentation accuracy and computational efficiency. ES-UNet integrates architectural and algorithmic improvements to achieve robust 3D medical image segmentation. While the framework incorporates established components, its core contributions lie in the optimized skip connection strategy and supporting techniques like RSS and DWD. Future work will explore adaptive scaling strategies and broader validation across diverse imaging modalities.

A stacking ensemble framework integrating radiomics and deep learning for prognostic prediction in head and neck cancer.

Wang B, Liu J, Zhang X, Lin J, Li S, Wang Z, Cao Z, Wen D, Liu T, Ramli HRH, Harith HH, Hasan WZW, Dong X

pubmed logopapersAug 13 2025
Radiomics models frequently face challenges related to reproducibility and robustness. To address these issues, we propose a multimodal, multi-model fusion framework utilizing stacking ensemble learning for prognostic prediction in head and neck cancer (HNC). This approach seeks to improve the accuracy and reliability of survival predictions. A total of 806 cases from nine centers were collected; 143 cases from two centers were assigned as the external validation cohort, while the remaining 663 were stratified and randomly split into training (n = 530) and internal validation (n = 133) sets. Radiomics features were extracted according to IBSI standards, and deep learning features were obtained using a 3D DenseNet-121 model. Following feature selection, the selected features were input into Cox, SVM, RSF, DeepCox, and DeepSurv models. A stacking fusion strategy was employed to develop the prognostic model. Model performance was evaluated using Kaplan-Meier survival curves and time-dependent ROC curves. On the external validation set, the model using combined PET and CT radiomics features achieved superior performance compared to single-modality models, with the RSF model obtaining the highest concordance index (C-index) of 0.7302. When using deep features extracted by 3D DenseNet-121, the PET + CT-based models demonstrated significantly improved prognostic accuracy, with Deepsurv and DeepCox achieving C-indices of 0.9217 and 0.9208, respectively. In stacking models, the PET + CT model using only radiomics features reached a C-index of 0.7324, while the deep feature-based stacking model achieved 0.9319. The best performance was obtained by the multi-feature fusion model, which integrated both radiomics and deep learning features from PET and CT, yielding a C-index of 0.9345. Kaplan-Meier survival analysis further confirmed the fusion model's ability to distinguish between high-risk and low-risk groups. The stacking-based ensemble model demonstrates superior performance compared to individual machine learning models, markedly improving the robustness of prognostic predictions.

From Promise to Practical Reality: Transforming Diffusion MRI Analysis with Fast Deep Learning Enhancement

Xinyi Wang, Michael Barnett, Frederique Boonstra, Yael Barnett, Mariano Cabezas, Arkiev D'Souza, Matthew C. Kiernan, Kain Kyle, Meng Law, Lynette Masters, Zihao Tang, Stephen Tisch, Sicong Tu, Anneke Van Der Walt, Dongang Wang, Fernando Calamante, Weidong Cai, Chenyu Wang

arxiv logopreprintAug 13 2025
Fiber orientation distribution (FOD) is an advanced diffusion MRI modeling technique that represents complex white matter fiber configurations, and a key step for subsequent brain tractography and connectome analysis. Its reliability and accuracy, however, heavily rely on the quality of the MRI acquisition and the subsequent estimation of the FODs at each voxel. Generating reliable FODs from widely available clinical protocols with single-shell and low-angular-resolution acquisitions remains challenging but could potentially be addressed with recent advances in deep learning-based enhancement techniques. Despite advancements, existing methods have predominantly been assessed on healthy subjects, which have proved to be a major hurdle for their clinical adoption. In this work, we validate a newly optimized enhancement framework, FastFOD-Net, across healthy controls and six neurological disorders. This accelerated end-to-end deep learning framework enhancing FODs with superior performance and delivering training/inference efficiency for clinical use ($60\times$ faster comparing to its predecessor). With the most comprehensive clinical evaluation to date, our work demonstrates the potential of FastFOD-Net in accelerating clinical neuroscience research, empowering diffusion MRI analysis for disease differentiation, improving interpretability in connectome applications, and reducing measurement errors to lower sample size requirements. Critically, this work will facilitate the more widespread adoption of, and build clinical trust in, deep learning based methods for diffusion MRI enhancement. Specifically, FastFOD-Net enables robust analysis of real-world, clinical diffusion MRI data, comparable to that achievable with high-quality research acquisitions.

MInDI-3D: Iterative Deep Learning in 3D for Sparse-view Cone Beam Computed Tomography

Daniel Barco, Marc Stadelmann, Martin Oswald, Ivo Herzig, Lukas Lichtensteiger, Pascal Paysan, Igor Peterlik, Michal Walczak, Bjoern Menze, Frank-Peter Schilling

arxiv logopreprintAug 13 2025
We present MInDI-3D (Medical Inversion by Direct Iteration in 3D), the first 3D conditional diffusion-based model for real-world sparse-view Cone Beam Computed Tomography (CBCT) artefact removal, aiming to reduce imaging radiation exposure. A key contribution is extending the "InDI" concept from 2D to a full 3D volumetric approach for medical images, implementing an iterative denoising process that refines the CBCT volume directly from sparse-view input. A further contribution is the generation of a large pseudo-CBCT dataset (16,182) from chest CT volumes of the CT-RATE public dataset to robustly train MInDI-3D. We performed a comprehensive evaluation, including quantitative metrics, scalability analysis, generalisation tests, and a clinical assessment by 11 clinicians. Our results show MInDI-3D's effectiveness, achieving a 12.96 (6.10) dB PSNR gain over uncorrected scans with only 50 projections on the CT-RATE pseudo-CBCT (independent real-world) test set and enabling an 8x reduction in imaging radiation exposure. We demonstrate its scalability by showing that performance improves with more training data. Importantly, MInDI-3D matches the performance of a 3D U-Net on real-world scans from 16 cancer patients across distortion and task-based metrics. It also generalises to new CBCT scanner geometries. Clinicians rated our model as sufficient for patient positioning across all anatomical sites and found it preserved lung tumour boundaries well.

A Chain of Diagnosis Framework for Accurate and Explainable Radiology Report Generation

Haibo Jin, Haoxuan Che, Sunan He, Hao Chen

arxiv logopreprintAug 13 2025
Despite the progress of radiology report generation (RRG), existing works face two challenges: 1) The performances in clinical efficacy are unsatisfactory, especially for lesion attributes description; 2) the generated text lacks explainability, making it difficult for radiologists to trust the results. To address the challenges, we focus on a trustworthy RRG model, which not only generates accurate descriptions of abnormalities, but also provides basis of its predictions. To this end, we propose a framework named chain of diagnosis (CoD), which maintains a chain of diagnostic process for clinically accurate and explainable RRG. It first generates question-answer (QA) pairs via diagnostic conversation to extract key findings, then prompts a large language model with QA diagnoses for accurate generation. To enhance explainability, a diagnosis grounding module is designed to match QA diagnoses and generated sentences, where the diagnoses act as a reference. Moreover, a lesion grounding module is designed to locate abnormalities in the image, further improving the working efficiency of radiologists. To facilitate label-efficient training, we propose an omni-supervised learning strategy with clinical consistency to leverage various types of annotations from different datasets. Our efforts lead to 1) an omni-labeled RRG dataset with QA pairs and lesion boxes; 2) a evaluation tool for assessing the accuracy of reports in describing lesion location and severity; 3) extensive experiments to demonstrate the effectiveness of CoD, where it outperforms both specialist and generalist models consistently on two RRG benchmarks and shows promising explainability by accurately grounding generated sentences to QA diagnoses and images.

Automated Segmentation of Coronal Brain Tissue Slabs for 3D Neuropathology

Jonathan Williams Ramirez, Dina Zemlyanker, Lucas Deden-Binder, Rogeny Herisse, Erendira Garcia Pallares, Karthik Gopinath, Harshvardhan Gazula, Christopher Mount, Liana N. Kozanno, Michael S. Marshall, Theresa R. Connors, Matthew P. Frosch, Mark Montine, Derek H. Oakley, Christine L. Mac Donald, C. Dirk Keene, Bradley T. Hyman, Juan Eugenio Iglesias

arxiv logopreprintAug 13 2025
Advances in image registration and machine learning have recently enabled volumetric analysis of \emph{postmortem} brain tissue from conventional photographs of coronal slabs, which are routinely collected in brain banks and neuropathology laboratories worldwide. One caveat of this methodology is the requirement of segmentation of the tissue from photographs, which currently requires costly manual intervention. In this article, we present a deep learning model to automate this process. The automatic segmentation tool relies on a U-Net architecture that was trained with a combination of \textit{(i)}1,414 manually segmented images of both fixed and fresh tissue, from specimens with varying diagnoses, photographed at two different sites; and \textit{(ii)}~2,000 synthetic images with randomized contrast and corresponding masks generated from MRI scans for improved generalizability to unseen photographic setups. Automated model predictions on a subset of photographs not seen in training were analyzed to estimate performance compared to manual labels -- including both inter- and intra-rater variability. Our model achieved a median Dice score over 0.98, mean surface distance under 0.4~mm, and 95\% Hausdorff distance under 1.60~mm, which approaches inter-/intra-rater levels. Our tool is publicly available at surfer.nmr.mgh.harvard.edu/fswiki/PhotoTools.

Quest for a clinically relevant medical image segmentation metric: the definition and implementation of Medical Similarity Index

Szuzina Fazekas, Bettina Katalin Budai, Viktor Bérczi, Pál Maurovich-Horvat, Zsolt Vizi

arxiv logopreprintAug 13 2025
Background: In the field of radiology and radiotherapy, accurate delineation of tissues and organs plays a crucial role in both diagnostics and therapeutics. While the gold standard remains expert-driven manual segmentation, many automatic segmentation methods are emerging. The evaluation of these methods primarily relies on traditional metrics that only incorporate geometrical properties and fail to adapt to various applications. Aims: This study aims to develop and implement a clinically relevant segmentation metric that can be adapted for use in various medical imaging applications. Methods: Bidirectional local distance was defined, and the points of the test contour were paired with points of the reference contour. After correcting for the distance between the test and reference center of mass, Euclidean distance was calculated between the paired points, and a score was given to each test point. The overall medical similarity index was calculated as the average score across all the test points. For demonstration, we used myoma and prostate datasets; nnUNet neural networks were trained for segmentation. Results: An easy-to-use, sustainable image processing pipeline was created using Python. The code is available in a public GitHub repository along with Google Colaboratory notebooks. The algorithm can handle multislice images with multiple masks per slice. Mask splitting algorithm is also provided that can separate the concave masks. We demonstrate the adaptability with prostate segmentation evaluation. Conclusions: A novel segmentation evaluation metric was implemented, and an open-access image processing pipeline was also provided, which can be easily used for automatic measurement of clinical relevance of medical image segmentation.}
Page 24 of 3493484 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.