Sort by:
Page 24 of 47469 results

Comparisons of AI automated segmentation techniques to manual segmentation techniques of the maxilla and maxillary sinus for CT or CBCT scans-A Systematic review.

Park JH, Hamimi M, Choi JJE, Figueredo CMS, Cameron MA

pubmed logopapersJun 3 2025
Accurate segmentation of the maxillary sinus from medical images is essential for diagnostic purposes and surgical planning. Manual segmentation of the maxillary sinus, while the gold standard, is time consuming and requires adequate training. To overcome this problem, AI enabled automatic segmentation software's developed. The purpose of this review is to systematically analyse the current literature to investigate the accuracy and efficiency of automatic segmentation techniques of the maxillary sinus to manual segmentation. A systematic approach to perform a thorough analysis of the existing literature using PRISMA guidelines. Data for this study was obtained from Pubmed, Medline, Embase, and Google Scholar databases. The inclusion and exclusion eligibility criteria were used to shortlist relevant studies. The sample size, anatomical structures segmented, experience of operators, type of manual segmentation software used, type of automatic segmentation software used, statistical comparative method used, and length of time of segmentation were analysed. This systematic review presents 10 studies that compared the accuracy and efficiency of automatic segmentation of the maxillary sinus to manual segmentation. All the studies included in this study were found to have a low risk of bias. Samples sizes ranged from 3 to 144, a variety of operators were used to manually segment the CBCT and segmentation was made primarily to 3D slicer and Mimics software. The comparison was primarily made to Unet architecture softwares, with the dice-coefficient being the primary means of comparison. This systematic review showed that automatic segmentation technique was consistently faster than manual segmentation techniques and over 90% accurate when compared to the gold standard of manual segmentation.

Deep Learning-Based Opportunistic CT Osteoporosis Screening and Establishment of Normative Values

Westerhoff, M., Gyftopoulos, S., Dane, B., Vega, E., Murdock, D., Lindow, N., Herter, F., Bousabarah, K., Recht, M. P., Bredella, M. A.

medrxiv logopreprintJun 3 2025
BackgroundOsteoporosis is underdiagnosed and undertreated prompting the exploration of opportunistic screening using CT and artificial intelligence (AI). PurposeTo develop a reproducible deep learning-based convolutional neural network to automatically place a 3D region of interest (ROI) in trabecular bone, develop a correction method to normalize attenuation across different CT protocols or and scanner models, and to establish thresholds for osteoporosis in a large diverse population. MethodsA deep learning-based method was developed to automatically quantify trabecular attenuation using a 3D ROI of the thoracic and lumbar spine on chest, abdomen, or spine CTs, adjusted for different tube voltages and scanner models. Normative values, thresholds for osteoporosis of trabecular attenuation of the spine were established across a diverse population, stratified by age, sex, race, and ethnicity using reported prevalence of osteoporosis by the WHO. Results538,946 CT examinations from 283,499 patients (mean age 65 years{+/-}15, 51.2% women and 55.5% White), performed on 50 scanner models using six different tube voltages were analyzed. Hounsfield Units at 80 kVp versus 120 kVp differed by 23%, and different scanner models resulted in differences of values by < 10%. Automated ROI placement of 1496 vertebra was validated by manual radiologist review, demonstrating >99% agreement. Mean trabecular attenuation was higher in young women (<50 years) than young men (p<.001) and decreased with age, with a steeper decline in postmenopausal women. In patients older than 50 years, trabecular attention was higher in males than females (p<.001). Trabecular attenuation was highest in Blacks, followed by Asians and lowest in Whites (p<.001). The threshold for L1 in diagnosing osteoporosis was 80 HU. ConclusionDeep learning-based automated opportunistic osteoporosis screening can identify patients with low bone mineral density that undergo CT scans for clinical purposes on different scanners and protocols. Key Results 3 main results/conclusionsO_LIIn a study of 538,946 CT examinations performed in 283,499 patients using different scanner models and imaging protocols, an automated deep learning-based convolutional neural network was able to accurately place a three-dimensional regions of interest within thoracic and lumbar vertebra to measure trabecular attenuation. C_LIO_LITube voltage had a larger influence on attenuation values (23%) than scanner model (<10%). C_LIO_LIA threshold of 80 HU was identified for L1 to diagnose osteoporosis using an automated three-dimensional region of interest. C_LI

Attention-enhanced residual U-Net: lymph node segmentation method with bimodal MRI images.

Qiu J, Chen C, Li M, Hong J, Dong B, Xu S, Lin Y

pubmed logopapersJun 2 2025
In medical images, lymph nodes (LNs) have fuzzy boundaries, diverse shapes and sizes, and structures similar to surrounding tissues. To automatically segment uterine LNs from sagittal magnetic resonance (MRI) scans, we combined T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI) images and tested the final results in our proposed model. This study used a data set of 158 MRI images of patients with FIGO staged LN confirmed by pathology. To improve the robustness of the model, data augmentation was applied to expand the data set. The training data was manually annotated by two experienced radiologists. The DWI and T2 images were fused and inputted into U-Net. The efficient channel attention (ECA) module was added to U-Net. A residual network was added to the encoding-decoding stage, named Efficient residual U-Net (ERU-Net), to obtain the final segmentation results and calculate the mean intersection-over-union (mIoU). The experimental results demonstrated that the ERU-Net network showed strong segmentation performance, which was significantly better than other segmentation networks. The mIoU reached 0.83, and the average pixel accuracy was 0.91. In addition, the precision was 0.90, and the corresponding recall was 0.91. In this study, ERU-Net successfully achieved the segmentation of LN in uterine MRI images. Compared with other segmentation networks, our network has the best segmentation effect on uterine LN. This provides a valuable reference for doctors to develop more effective and efficient treatment plans.

Multicycle Dosimetric Behavior and Dose-Effect Relationships in [<sup>177</sup>Lu]Lu-DOTATATE Peptide Receptor Radionuclide Therapy.

Kayal G, Roseland ME, Wang C, Fitzpatrick K, Mirando D, Suresh K, Wong KK, Dewaraja YK

pubmed logopapersJun 2 2025
We investigated pharmacokinetics, dosimetric patterns, and absorbed dose (AD)-effect correlations in [<sup>177</sup>Lu]Lu-DOTATATE peptide receptor radionuclide therapy (PRRT) for metastatic neuroendocrine tumors (NETs) to develop strategies for future personalized dosimetry-guided treatments. <b>Methods:</b> Patients treated with standard [<sup>177</sup>Lu]Lu-DOTATATE PRRT were recruited for serial SPECT/CT imaging. Kidneys were segmented on CT using a deep learning algorithm, and tumors were segmented at each cycle using a SPECT gradient-based tool, guided by radiologist-defined contours on baseline CT/MRI. Dosimetry was performed using an automated workflow that included contour intensity-based SPECT-SPECT registration, generation of Monte Carlo dose-rate maps, and dose-rate fitting. Lesion-level response at first follow-up was evaluated using both radiologic (RECIST and modified RECIST) and [<sup>68</sup>Ga]Ga-DOTATATE PET-based criteria. Kidney toxicity was evaluated based on the estimated glomerular filtration rate (eGFR) at 9 mo after PRRT. <b>Results:</b> Dosimetry was performed after cycle 1 in 30 patients and after all cycles in 22 of 30 patients who completed SPECT/CT imaging after each cycle. Median cumulative tumor (<i>n</i> = 78) AD was 2.2 Gy/GBq (range, 0.1-20.8 Gy/GBq), whereas median kidney AD was 0.44 Gy/GBq (range, 0.25-0.96 Gy/GBq). The tumor-to-kidney AD ratio decreased with each cycle (median, 6.4, 5.7, 4.7, and 3.9 for cycles 1-4) because of a decrease in tumor AD, while kidney AD remained relatively constant. Higher-grade (grade 2) and pancreatic NETs showed a significantly larger drop in AD with each cycle, as well as significantly lower AD and effective half-life (T<sub>eff</sub>), than did low-grade (grade 1) and small intestinal NETs, respectively. T<sub>eff</sub> remained relatively constant with each cycle for both tumors and kidneys. Kidney T<sub>eff</sub> and AD were significantly higher in patients with low eGFR than in those with high eGFR. Tumor AD was not significantly associated with response measures. There was no nephrotoxicity higher than grade 2; however, a significant negative association was found in univariate analyses between eGFR at 9 mo and AD to the kidney, which improved in a multivariable model that also adjusted for baseline eGFR (cycle 1 AD, <i>P</i> = 0.020, adjusted <i>R</i> <sup>2</sup> = 0.57; cumulative AD, <i>P</i> = 0.049, adjusted <i>R</i> <sup>2</sup> = 0.65). The association between percentage change in eGFR and AD to the kidney was also significant in univariate analysis and after adjusting for baseline eGFR (cycle 1 AD, <i>P</i> = 0.006, adjusted <i>R</i> <sup>2</sup> = 0.21; cumulative AD, <i>P</i> = 0.019, adjusted <i>R</i> <sup>2</sup> = 0.21). <b>Conclusion:</b> The dosimetric behavior we report over different cycles and for different NET subgroups can be considered when optimizing PRRT to individual patients. The models we present for the relationship between eGFR and AD have potential for clinical use in predicting renal function early in the treatment course. Furthermore, reported pharmacokinetics for patient subgroups allow more appropriate selection of population parameters to be used in protocols with fewer imaging time points that facilitate more widespread adoption of dosimetry.

Medical World Model: Generative Simulation of Tumor Evolution for Treatment Planning

Yijun Yang, Zhao-Yang Wang, Qiuping Liu, Shuwen Sun, Kang Wang, Rama Chellappa, Zongwei Zhou, Alan Yuille, Lei Zhu, Yu-Dong Zhang, Jieneng Chen

arxiv logopreprintJun 2 2025
Providing effective treatment and making informed clinical decisions are essential goals of modern medicine and clinical care. We are interested in simulating disease dynamics for clinical decision-making, leveraging recent advances in large generative models. To this end, we introduce the Medical World Model (MeWM), the first world model in medicine that visually predicts future disease states based on clinical decisions. MeWM comprises (i) vision-language models to serve as policy models, and (ii) tumor generative models as dynamics models. The policy model generates action plans, such as clinical treatments, while the dynamics model simulates tumor progression or regression under given treatment conditions. Building on this, we propose the inverse dynamics model that applies survival analysis to the simulated post-treatment tumor, enabling the evaluation of treatment efficacy and the selection of the optimal clinical action plan. As a result, the proposed MeWM simulates disease dynamics by synthesizing post-treatment tumors, with state-of-the-art specificity in Turing tests evaluated by radiologists. Simultaneously, its inverse dynamics model outperforms medical-specialized GPTs in optimizing individualized treatment protocols across all metrics. Notably, MeWM improves clinical decision-making for interventional physicians, boosting F1-score in selecting the optimal TACE protocol by 13%, paving the way for future integration of medical world models as the second readers.

Harnessing Artificial Intelligence to Predict Spontaneous Stone Passage: Development and Testing of a Machine Learning-Based Calculator.

Gupta K, Ricapito A, Lundon D, Khargi R, Connors C, Yaghoubian AJ, Gallante B, Atallah WM, Gupta M

pubmed logopapersJun 2 2025
<b><i>Objective:</i></b> We sought to use artificial intelligence (AI) to develop and test calculators to predict spontaneous stone passage (SSP) using radiographical and clinical data. <b><i>Methods:</i></b> Consecutive patients with solitary ureteral stones ≤10 mm on CT were prospectively enrolled and managed according to American Urological Association guidelines. The first 70% of patients were placed in the "training group" and used to develop the calculators. The latter 30% were enrolled in the "testing group" to externally validate the calculators. Exclusion criteria included contraindication to trial of SSP, ureteral stent, and anatomical anomaly. Demographic, clinical, and radiographical data were obtained and fed into machine learning (ML) platforms. SSP was defined as passage of stone without intervention. Calculators were derived from data using multivariate logistic regression. Discrimination, calibration, and clinical utility/net benefit of the developed models were assessed in the validation cohort. Receiver operating characteristic curves were constructed to measure their discriminative ability. <b><i>Results:</i></b> Fifty-one percent of 131 "training" patients spontaneously passed their stones. Passed stones were significantly closer to the bladder (8.6 <i>vs</i> 11.8 cm, p = 0.01) and smaller in length, width, and height. Two ML calculators were developed, one supervised machine learning (SML) and the other unsupervised machine learning (USML), and compared to an existing tool Multi-centre Cohort Study Evaluating the role of Inflammatory Markers In Patients Presenting with Acute Ureteric Colic (MIMIC). The SML calculator included maximum stone width (MSW), ureteral diameter above the stone (UDA), and distance from ureterovesical junction to bottom of stone and had an area under the curve (AUC) of 0.737 upon external validation of 58 "test" patients. Parameters selected by USML included MSW, UDA, and use of an anticholinergic, and it had an AUC of 0.706. The MIMIC calculator's AUC was 0.588 (0.489-0.686). <b><i>Conclusion:</i></b> We used AI to develop calculators that outperformed an existing tool and can help providers and patients make a better-informed decision for the treatment of ureteral stones.

A Deep Learning-Based Artificial Intelligence Model Assisting Thyroid Nodule Diagnosis and Management: Pilot Results for Evaluating Thyroid Malignancy in Pediatric Cohorts.

Ha EJ, Lee JH, Mak N, Duh AK, Tong E, Yeom KW, Meister KD

pubmed logopapersJun 2 2025
<b><i>Purpose:</i></b> Artificial intelligence (AI) models have shown promise in predicting malignant thyroid nodules in adults; however, research on deep learning (DL) for pediatric cases is limited. We evaluated the applicability of a DL-based model for assessing thyroid nodules in children. <b><i>Methods:</i></b> We retrospectively identified two pediatric cohorts (<i>n</i> = 128; mean age 15.5 ± 2.4 years; 103 girls) who had thyroid nodule ultrasonography (US) with histological confirmation at two institutions. The AI-Thyroid DL model, originally trained on adult data, was tested on pediatric nodules in three scenarios axial US images, longitudinal US images, and both. We conducted a subgroup analysis based on the two pediatric cohorts and age groups (≥14 years vs. < 14 years) and compared the model's performance with radiologist interpretations using the Thyroid Imaging Reporting and Data System (TIRADS). <b><i>Results:</i></b> Out of 156 nodules analyzed, 47 (30.1%) were malignant. AI-Thyroid demonstrated respective area under the receiver operating characteristic (AUROC), sensitivity, and specificity values of 0.913-0.929, 78.7-89.4%, and 79.8-91.7%, respectively. The AUROC values did not significantly differ across the image planes (all <i>p</i> > 0.05) and between the two pediatric cohorts (<i>p</i> = 0.804). No significant differences were observed between age groups in terms of sensitivity and specificity (all <i>p</i> > 0.05) while the AUROC values were higher for patients aged <14 years compared to those aged ≥14 years (all <i>p</i> < 0.01). AI-Thyroid yielded the highest AUROC values, followed by ACR-TIRADS and K-TIRADS (<i>p</i> = 0.016 and <i>p</i> < 0.001, respectively). <b><i>Conclusion:</i></b> AI-Thyroid demonstrated high performance in diagnosing pediatric thyroid cancer. Future research should focus on optimizing AI-Thyroid for pediatric use and exploring its role alongside tissue sampling in clinical practice.

Exploring <i>SLC25A42</i> as a Radiogenomic Marker from the Perioperative Stage to Chemotherapy in Hepatitis-Related Hepatocellular Carcinoma.

Dou L, Jiang J, Yao H, Zhang B, Wang X

pubmed logopapersJun 2 2025
<b><i>Background:</i></b> The molecular mechanisms driving hepatocellular carcinoma (HCC) and predict the chemotherapy sensitive remain unclear; therefore, identification of these key biomarkers is essential for early diagnosis and treatment of HCC. <b><i>Method:</i></b> We collected and processed Computed Tomography (CT) and clinical data from 116 patients with autoimmune hepatitis (AIH) and HCC who came to our hospital's Liver Cancer Center. We then identified and extracted important characteristic features of significant patient images and correlated them with mitochondria-related genes using machine learning techniques such as multihead attention networks, lasso regression, principal component analysis (PCA), and support vector machines (SVM). These genes were integrated into radiomics signature models to explore their role in disease progression. We further correlated these results with clinical variables to screen for driver genes and evaluate the predict ability of chemotherapy sensitive of key genes in liver cancer (LC) patients. Finally, qPCR was used to validate the expression of this gene in patient samples. <b><i>Results:</i></b> Our study utilized attention networks to identify disease regions in medical images with 97% accuracy and an AUC of 94%. We extracted 942 imaging features, identifying five key features through lasso regression that accurately differentiate AIH from HCC. Transcriptome analysis revealed 132 upregulated and 101 downregulated genes in AIH, with 45 significant genes identified by XGBOOST. In HCC analysis, PCA and random forest highlighted 11 key features. Among mitochondrial genes, <i>SLC25A42</i> correlated positively with normal tissue imaging features but negatively with cancerous tissues and was identified as a driver gene. Low expression of <i>SLC25A42</i> was associated with chemotherapy sensitive in HCC patients. <b><i>Conclusions:</i></b> In conclusion, machine learning modeling combined with genomic profiling provides a promising approach to identify the driver gene <i>SLC25A42</i> in LC, which may help improve diagnostic accuracy and chemotherapy sensitivity for this disease.

Decision support using machine learning for predicting adequate bladder filling in prostate radiotherapy: a feasibility study.

Saiyo N, Assawanuwat K, Janthawanno P, Paduka S, Prempetch K, Chanphol T, Sakchatchawan B, Thongsawad S

pubmed logopapersJun 2 2025
This study aimed to develop a model for predicting the bladder volume ratio between daily CBCT and CT to determine adequate bladder filling in patients undergoing treatment for prostate cancer with external beam radiation therapy (EBRT). The model was trained using 465 datasets obtained from 34 prostate cancer patients. A total of 16 features were collected as input data, which included basic patient information, patient health status, blood examination laboratory results, and specific radiation therapy information. The ratio of the bladder volume between daily CBCT (dCBCT) and planning CT (pCT) was used as the model response. The model was trained using a bootstrap aggregation (bagging) algorithm with two machine learning (ML) approaches: classification and regression. The model accuracy was validated using other 93 datasets. For the regression approach, the accuracy of the model was evaluated based on the root mean square error (RMSE) and mean absolute error (MAE). By contrast, the model performance of the classification approach was assessed using sensitivity, specificity, and accuracy scores. The ML model showed promising results in the prediction of the bladder volume ratio between dCBCT and pCT, with an RMSE of 0.244 and MAE of 0.172 for the regression approach, sensitivity of 95.24%, specificity of 92.16%, and accuracy of 93.55% for the classification approach. The prediction model could potentially help the radiological technologist determine whether the bladder is full before treatment, thereby reducing the requirement for re-scan CBCT. HIGHLIGHTS: The bagging model demonstrates strong performance in predicting optimal bladder filling. The model achieves promising results with 95.24% sensitivity and 92.16% specificity. It supports therapists in assessing bladder fullness prior to treatment. It helps reduce the risk of requiring repeat CBCT scans.
Page 24 of 47469 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.