Sort by:
Page 24 of 74733 results

External Validation of an Upgraded AI Model for Screening Ileocolic Intussusception Using Pediatric Abdominal Radiographs: Multicenter Retrospective Study.

Lee JH, Kim PH, Son NH, Han K, Kang Y, Jeong S, Kim EK, Yoon H, Gatidis S, Vasanawala S, Yoon HM, Shin HJ

pubmed logopapersJul 8 2025
Artificial intelligence (AI) is increasingly used in radiology, but its development in pediatric imaging remains limited, particularly for emergent conditions. Ileocolic intussusception is an important cause of acute abdominal pain in infants and toddlers and requires timely diagnosis to prevent complications such as bowel ischemia or perforation. While ultrasonography is the diagnostic standard due to its high sensitivity and specificity, its accessibility may be limited, especially outside tertiary centers. Abdominal radiographs (AXRs), despite their limited sensitivity, are often the first-line imaging modality in clinical practice. In this context, AI could support early screening and triage by analyzing AXRs and identifying patients who require further ultrasonography evaluation. This study aimed to upgrade and externally validate an AI model for screening ileocolic intussusception using pediatric AXRs with multicenter data and to assess the diagnostic performance of the model in comparison with radiologists of varying experience levels with and without AI assistance. This retrospective study included pediatric patients (≤5 years) who underwent both AXRs and ultrasonography for suspected intussusception. Based on the preliminary study from hospital A, the AI model was retrained using data from hospital B and validated with external datasets from hospitals C and D. Diagnostic performance of the upgraded AI model was evaluated using sensitivity, specificity, and the area under the receiver operating characteristic curve (AUC). A reader study was conducted with 3 radiologists, including 2 trainees and 1 pediatric radiologist, to evaluate diagnostic performance with and without AI assistance. Based on the previously developed AI model trained on 746 patients from hospital A, an additional 431 patients from hospital B (including 143 intussusception cases) were used for further training to develop an upgraded AI model. External validation was conducted using data from hospital C (n=68; 19 intussusception cases) and hospital D (n=90; 30 intussusception cases). The upgraded AI model achieved a sensitivity of 81.7% (95% CI 68.6%-90%) and a specificity of 81.7% (95% CI 73.3%-87.8%), with an AUC of 86.2% (95% CI 79.2%-92.1%) in the external validation set. Without AI assistance, radiologists showed lower performance (overall AUC 64%; sensitivity 49.7%; specificity 77.1%). With AI assistance, radiologists' specificity improved to 93% (difference +15.9%; P<.001), and AUC increased to 79.2% (difference +15.2%; P=.05). The least experienced reader showed the largest improvement in specificity (+37.6%; P<.001) and AUC (+14.7%; P=.08). The upgraded AI model improved diagnostic performance for screening ileocolic intussusception on pediatric AXRs. It effectively enhanced the specificity and overall accuracy of radiologists, particularly those with less experience in pediatric radiology. A user-friendly software platform was introduced to support broader clinical validation and underscores the potential of AI as a screening and triage tool in pediatric emergency settings.

External Validation on a Japanese Cohort of a Computer-Aided Diagnosis System Aimed at Characterizing ISUP ≥ 2 Prostate Cancers at Multiparametric MRI.

Escande R, Jaouen T, Gonindard-Melodelima C, Crouzet S, Kuroda S, Souchon R, Rouvière O, Shoji S

pubmed logopapersJul 7 2025
To evaluate the generalizability of a computer-aided diagnosis (CADx) system based on the apparent diffusion coefficient (ADC) and wash-in rate, and trained on a French population to diagnose International Society of Urological Pathology ≥ 2 prostate cancer on multiparametric MRI. Sixty-eight consecutive patients who underwent radical prostatectomy at a single Japanese institution were retrospectively included. Pre-prostatectomy MRIs were reviewed by an experienced radiologist who assigned to suspicious lesions a Prostate Imaging-Reporting and Data System version 2.1 (PI-RADSv2.1) score and delineated them. The CADx score was computed from these regions-of-interest. Using prostatectomy whole-mounts as reference, the CADx and PI-RADSv2.1 scores were compared at the lesion level using areas under the receiver operating characteristic curves (AUC), and sensitivities and specificities obtained with predefined thresholds. In PZ, AUCs were 80% (95% confidence interval [95% CI]: 71-90) for the CADx score and 80% (95% CI: 71-89; p = 0.886) for the PI-RADSv2.1score; in TZ, AUCs were 79% (95% CI: 66-90) for the CADx score and 93% (95% CI: 82-96; p = 0.051) for the PI-RADSv2.1 score. The CADx diagnostic thresholds that provided sensitivities of 86%-91% and specificities of 64%-75% in French test cohorts yielded sensitivities of 60% (95% CI: 38-83) in PZ and 42% (95% CI: 20-71) in TZ, with specificities of 95% (95% CI: 86-100) and 92% (95% CI: 73-100), respectively. This shift may be attributed to higher ADC values and lower dynamic contrast-enhanced temporal resolution in the test cohort. The CADx obtained good overall results in this external cohort. However, predefined diagnostic thresholds provided lower sensitivities and higher specificities than expected.

Performance of GPT-4 for automated prostate biopsy decision-making based on mpMRI: a multi-center evidence study.

Shi MJ, Wang ZX, Wang SK, Li XH, Zhang YL, Yan Y, An R, Dong LN, Qiu L, Tian T, Liu JX, Song HC, Wang YF, Deng C, Cao ZB, Wang HY, Wang Z, Wei W, Song J, Lu J, Wei X, Wang ZC

pubmed logopapersJul 7 2025
Multiparametric magnetic resonance imaging (mpMRI) has significantly advanced prostate cancer (PCa) detection, yet decisions on invasive biopsy with moderate prostate imaging reporting and data system (PI-RADS) scores remain ambiguous. To explore the decision-making capacity of Generative Pretrained Transformer-4 (GPT-4) for automated prostate biopsy recommendations, we included 2299 individuals who underwent prostate biopsy from 2018 to 2023 in 3 large medical centers, with available mpMRI before biopsy and documented clinical-histopathological records. GPT-4 generated structured reports with given prompts. The performance of GPT-4 was quantified using confusion matrices, and sensitivity, specificity, as well as area under the curve were calculated. Multiple artificial evaluation procedures were conducted. Wilcoxon's rank sum test, Fisher's exact test, and Kruskal-Wallis tests were used for comparisons. Utilizing the largest sample size in the Chinese population, patients with moderate PI-RADS scores (scores 3 and 4) accounted for 39.7% (912/2299), defined as the subset-of-interest (SOI). The detection rates of clinically significant PCa corresponding to PI-RADS scores 2-5 were 9.4, 27.3, 49.2, and 80.1%, respectively. Nearly 47.5% (433/912) of SOI patients were histopathologically proven to have undergone unnecessary prostate biopsies. With the assistance of GPT-4, 20.8% (190/912) of the SOI population could avoid unnecessary biopsies, and it performed even better [28.8% (118/410)] in the most heterogeneous subgroup of PI-RADS score 3. More than 90.0% of GPT-4 -generated reports were comprehensive and easy to understand, but less satisfied with the accuracy (82.8%). GPT-4 also demonstrated cognitive potential for handling complex problems. Additionally, the Chain of Thought method enabled us to better understand the decision-making logic behind GPT-4. Eventually, we developed a ProstAIGuide platform to facilitate accessibility for both doctors and patients. This multi-center study highlights the clinical utility of GPT-4 for prostate biopsy decision-making and advances our understanding of the latest artificial intelligence implementation in various medical scenarios.

HGNet: High-Order Spatial Awareness Hypergraph and Multi-Scale Context Attention Network for Colorectal Polyp Detection

Xiaofang Liu, Lingling Sun, Xuqing Zhang, Yuannong Ye, Bin zhao

arxiv logopreprintJul 7 2025
Colorectal cancer (CRC) is closely linked to the malignant transformation of colorectal polyps, making early detection essential. However, current models struggle with detecting small lesions, accurately localizing boundaries, and providing interpretable decisions. To address these issues, we propose HGNet, which integrates High-Order Spatial Awareness Hypergraph and Multi-Scale Context Attention. Key innovations include: (1) an Efficient Multi-Scale Context Attention (EMCA) module to enhance lesion feature representation and boundary modeling; (2) the deployment of a spatial hypergraph convolution module before the detection head to capture higher-order spatial relationships between nodes; (3) the application of transfer learning to address the scarcity of medical image data; and (4) Eigen Class Activation Map (Eigen-CAM) for decision visualization. Experimental results show that HGNet achieves 94% accuracy, 90.6% recall, and 90% [email protected], significantly improving small lesion differentiation and clinical interpretability. The source code will be made publicly available upon publication of this paper.

Multilayer perceptron deep learning radiomics model based on Gd-BOPTA MRI to identify vessels encapsulating tumor clusters in hepatocellular carcinoma: a multi-center study.

Gu M, Zou W, Chen H, He R, Zhao X, Jia N, Liu W, Wang P

pubmed logopapersJul 7 2025
The purpose of this study is to mainly develop a predictive model based on clinicoradiological and radiomics features from preoperative gadobenate-enhanced (Gd-BOPTA) magnetic resonance imaging (MRI) using multilayer perceptron (MLP) deep learning to predict vessels encapsulating tumor clusters (VETC) in hepatocellular carcinoma (HCC) patients. A total of 230 patients with histopathologically confirmed HCC who underwent preoperative Gd-BOPTA MRI before hepatectomy were retrospectively enrolled from three hospitals (144, 54, and 32 in training, test, and validation set, respectively). Univariate and multivariate logistic regression analyses were used to determine independent clinicoradiological predictors significantly associated with VETC, which then constituted the clinicoradiological model. Regions of interest (ROIs) included four modes, intratumoral (Tumor), peritumoral area ≤ 2 mm (Peri2mm), intratumoral + peritumoral area ≤ 2 mm (Tumor + Peri2mm) and intratumoral integrated with peritumoral ≤ 2 mm as a whole (TumorPeri2mm). A total of 7322 radiomics features were extracted respectively for ROI(Tumor), ROI(Peri2mm), ROI(TumorPeri2mm) and 14644 radiomics features for ROI(Tumor + Peri2mm). Least absolute shrinkage and selection operator (LASSO) and univariate logistic regression analysis were used to select the important features. Seven different machine learning classifiers respectively combined the radiomics signatures selected from four ROIs to constitute different models, and compare the performance between them in three sets and then select the optimal combination to become the radiomics model we need. Then a radiomics score (rad-score) was generated, which combined significant clinicoradiological predictors to constituted the fusion model through multivariate logistic regression analysis. After comparing the performance of the three models using area under receiver operating characteristic curve (AUC), integrated discrimination index (IDI) and net reclassification index (NRI), choose the optimal predictive model for VETC prediction. Arterial peritumoral enhancement and peritumoral hypointensity on hepatobiliary phase (HBP) were independent risk factors for VETC, and constituted the Radiology model, without any clinical variables. Arterial peritumoral enhancement defined as the enhancement outside the tumor boundary in the late stage of arterial phase or early stage of portal phase, extensive contact with the tumor edge, which becomes isointense during the DP. MLP deep learning algorithm integrated radiomics features selected from ROI TumorPeri2mm was the best combination, which constituted the radiomics model (MLP model). A MLP score (MLP_score) was calculated then, which combining the two radiology features composed the fusion model (Radiology MLP model), with AUCs of 0.871, 0.894, 0.918 in the training, test and validation sets. Compared with the two models aforementioned, the Radiology MLP model demonstrated a 33.4%-131.3% improvement in NRI and a 9.3%-50% improvement in IDI, showing better discrimination, calibration and clinical usefulness in three sets, which was selected as the optimal predictive model. We mainly developed a fusion model (Radiology MLP model) that integrated radiology and radiomics features using MLP deep learning algorithm to predict vessels encapsulating tumor clusters (VETC) in hepatocellular carcinoma (HCC) patients, which yield an incremental value over the radiology and the MLP model.

Development and retrospective validation of an artificial intelligence system for diagnostic assessment of prostate biopsies: study protocol.

Mulliqi N, Blilie A, Ji X, Szolnoky K, Olsson H, Titus M, Martinez Gonzalez G, Boman SE, Valkonen M, Gudlaugsson E, Kjosavik SR, Asenjo J, Gambacorta M, Libretti P, Braun M, Kordek R, Łowicki R, Hotakainen K, Väre P, Pedersen BG, Sørensen KD, Ulhøi BP, Rantalainen M, Ruusuvuori P, Delahunt B, Samaratunga H, Tsuzuki T, Janssen EAM, Egevad L, Kartasalo K, Eklund M

pubmed logopapersJul 7 2025
Histopathological evaluation of prostate biopsies using the Gleason scoring system is critical for prostate cancer diagnosis and treatment selection. However, grading variability among pathologists can lead to inconsistent assessments, risking inappropriate treatment. Similar challenges complicate the assessment of other prognostic features like cribriform cancer morphology and perineural invasion. Many pathology departments are also facing an increasingly unsustainable workload due to rising prostate cancer incidence and a decreasing pathologist workforce coinciding with increasing requirements for more complex assessments and reporting. Digital pathology and artificial intelligence (AI) algorithms for analysing whole slide images show promise in improving the accuracy and efficiency of histopathological assessments. Studies have demonstrated AI's capability to diagnose and grade prostate cancer comparably to expert pathologists. However, external validations on diverse data sets have been limited and often show reduced performance. Historically, there have been no well-established guidelines for AI study designs and validation methods. Diagnostic assessments of AI systems often lack preregistered protocols and rigorous external cohort sampling, essential for reliable evidence of their safety and accuracy. This study protocol covers the retrospective validation of an AI system for prostate biopsy assessment. The primary objective of the study is to develop a high-performing and robust AI model for diagnosis and Gleason scoring of prostate cancer in core needle biopsies, and at scale evaluate whether it can generalise to fully external data from independent patients, pathology laboratories and digitalisation platforms. The secondary objectives cover AI performance in estimating cancer extent and detecting cribriform prostate cancer and perineural invasion. This protocol outlines the steps for data collection, predefined partitioning of data cohorts for AI model training and validation, model development and predetermined statistical analyses, ensuring systematic development and comprehensive validation of the system. The protocol adheres to Transparent Reporting of a multivariable prediction model of Individual Prognosis Or Diagnosis+AI (TRIPOD+AI), Protocol Items for External Cohort Evaluation of a Deep Learning System in Cancer Diagnostics (PIECES), Checklist for AI in Medical Imaging (CLAIM) and other relevant best practices. Data collection and usage were approved by the respective ethical review boards of each participating clinical laboratory, and centralised anonymised data handling was approved by the Swedish Ethical Review Authority. The study will be conducted in agreement with the Helsinki Declaration. The findings will be disseminated in peer-reviewed publications (open access).

Self-supervised Deep Learning for Denoising in Ultrasound Microvascular Imaging

Lijie Huang, Jingyi Yin, Jingke Zhang, U-Wai Lok, Ryan M. DeRuiter, Jieyang Jin, Kate M. Knoll, Kendra E. Petersen, James D. Krier, Xiang-yang Zhu, Gina K. Hesley, Kathryn A. Robinson, Andrew J. Bentall, Thomas D. Atwell, Andrew D. Rule, Lilach O. Lerman, Shigao Chen, Chengwu Huang

arxiv logopreprintJul 7 2025
Ultrasound microvascular imaging (UMI) is often hindered by low signal-to-noise ratio (SNR), especially in contrast-free or deep tissue scenarios, which impairs subsequent vascular quantification and reliable disease diagnosis. To address this challenge, we propose Half-Angle-to-Half-Angle (HA2HA), a self-supervised denoising framework specifically designed for UMI. HA2HA constructs training pairs from complementary angular subsets of beamformed radio-frequency (RF) blood flow data, across which vascular signals remain consistent while noise varies. HA2HA was trained using in-vivo contrast-free pig kidney data and validated across diverse datasets, including contrast-free and contrast-enhanced data from pig kidneys, as well as human liver and kidney. An improvement exceeding 15 dB in both contrast-to-noise ratio (CNR) and SNR was observed, indicating a substantial enhancement in image quality. In addition to power Doppler imaging, denoising directly in the RF domain is also beneficial for other downstream processing such as color Doppler imaging (CDI). CDI results of human liver derived from the HA2HA-denoised signals exhibited improved microvascular flow visualization, with a suppressed noisy background. HA2HA offers a label-free, generalizable, and clinically applicable solution for robust vascular imaging in both contrast-free and contrast-enhanced UMI.

Dynamic abdominal MRI image generation using cGANs: A generalized model for various breathing patterns with extensive evaluation.

Cordón-Avila A, Ballı ÖF, Damme K, Abayazid M

pubmed logopapersJul 7 2025
Organ motion is a limiting factor during the treatment of abdominal tumors. During abdominal interventions, medical images are acquired to provide guidance, however, this increases operative time and radiation exposure. In this paper, conditional generative adversarial networks are implemented to generate dynamic magnetic resonance images using external abdominal motion as a surrogate signal. The generator was trained to account for breathing variability, and different models were investigated to improve motion quality. Additionally, an objective and subjective study were conducted to assess image and motion quality. The objective study included different metrics, such as structural similarity index measure (SSIM) and mean absolute error (MAE). In the subjective study, 32 clinical experts participated in evaluating the generated images by completing different tasks. The tasks involved identifying images and videos as real or fake, via a questionnaire allowing experts to assess the realism in static images and dynamic sequences. The results of the best-performing model displayed an SSIM of 0.73 ± 0.13, and the MAE was below 4.5 and 1.8 mm for the superior-inferior and anterior-posterior directions of motion. The proposed framework was compared to a related method that utilized a set of convolutional neural networks combined with recurrent layers. In the subjective study, more than 50% of the generated images and dynamic sequences were classified as real, except for one task. Synthetic images have the potential to reduce the need for acquiring intraoperative images, decreasing time and radiation exposure. A video summary can be found in the supplementary material.

Development and International Validation of a Deep Learning Model for Predicting Acute Pancreatitis Severity from CT Scans

Xu, Y., Teutsch, B., Zeng, W., Hu, Y., Rastogi, S., Hu, E. Y., DeGregorio, I. M., Fung, C. W., Richter, B. I., Cummings, R., Goldberg, J. E., Mathieu, E., Appiah Asare, B., Hegedus, P., Gurza, K.-B., Szabo, I. V., Tarjan, H., Szentesi, A., Borbely, R., Molnar, D., Faluhelyi, N., Vincze, A., Marta, K., Hegyi, P., Lei, Q., Gonda, T., Huang, C., Shen, Y.

medrxiv logopreprintJul 7 2025
Background and aimsAcute pancreatitis (AP) is a common gastrointestinal disease with rising global incidence. While most cases are mild, severe AP (SAP) carries high mortality. Early and accurate severity prediction is crucial for optimal management. However, existing severity prediction models, such as BISAP and mCTSI, have modest accuracy and often rely on data unavailable at admission. This study proposes a deep learning (DL) model to predict AP severity using abdominal contrast-enhanced CT (CECT) scans acquired within 24 hours of admission. MethodsWe collected 10,130 studies from 8,335 patients across a multi-site U.S. health system. The model was trained in two stages: (1) self-supervised pretraining on large-scale unlabeled CT studies and (2) fine-tuning on 550 labeled studies. Performance was evaluated against mCTSI and BISAP on a hold-out internal test set (n=100 patients) and externally validated on a Hungarian AP registry (n=518 patients). ResultsOn the internal test set, the model achieved AUROCs of 0.888 (95% CI: 0.800-0.960) for SAP and 0.888 (95% CI: 0.819-0.946) for mild AP (MAP), outperforming mCTSI (p = 0.002). External validation showed robust AUROCs of 0.887 (95% CI: 0.825-0.941) for SAP and 0.858 (95% CI: 0.826-0.888) for MAP, surpassing mCTSI (p = 0.024) and BISAP (p = 0.002). Retrospective simulation suggested the models potential to support admission triage and serve as a second reader during CECT interpretation. ConclusionsThe proposed DL model outperformed standard scoring systems for AP severity prediction, generalized well to external data, and shows promise for providing early clinical decision support and improving resource allocation.

A Deep Learning Model Integrating Clinical and MRI Features Improves Risk Stratification and Reduces Unnecessary Biopsies in Men with Suspected Prostate Cancer.

Bacchetti E, De Nardin A, Giannarini G, Cereser L, Zuiani C, Crestani A, Girometti R, Foresti GL

pubmed logopapersJul 7 2025
<b>Background:</b> Accurate upfront risk stratification in suspected clinically significant prostate cancer (csPCa) may reduce unnecessary prostate biopsies. Integrating clinical and Magnetic Resonance Imaging (MRI) variables using deep learning could improve prediction. <b>Methods:</b> We retrospectively analysed 538 men who underwent MRI and biopsy between April 2019-September 2024. A fully connected neural network was trained using 5-fold cross-validation. Model 1 included clinical features (age, prostate-specific antigen [PSA], PSA density, digital rectal examination, family history, prior negative biopsy, and ongoing therapy). Model 2 used MRI-derived Prostate Imaging Reporting and Data System (PI-RADS) categories. Model 3 used all previous variables as well as lesion size, location, and prostate volume as determined on MRI. <b>Results:</b> Model 3 achieved the highest area under the receiver operating characteristic curve (AUC = 0.822), followed by Model 2 (AUC = 0.778) and Model 1 (AUC = 0.716). Sensitivities for detecting clinically significant prostate cancer (csPCa) were 87.4%, 91.6%, and 86.8% for Models 1, 2, and 3, respectively. Although Model 3 had slightly lower sensitivity than Model 2, it showed higher specificity, reducing false positives and avoiding 43.4% and 21.2% more biopsies compared to Models 1 and 2. Decision curve analysis showed M2 had the highest net benefit at risk thresholds ≤ 20%, while M3 was superior above 20%. <b>Conclusions:</b> Model 3 improved csPCa risk stratification, particularly in biopsy-averse settings, while Model 2 was more effective in cancer-averse scenarios. These models support personalized, context-sensitive biopsy decisions.
Page 24 of 74733 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.