Sort by:
Page 23 of 74733 results

Data Extraction and Curation from Radiology Reports for Pancreatic Cyst Surveillance Using Large Language Models.

Choubey AP, Eguia E, Hollingsworth A, Chatterjee S, D'Angelica MI, Jarnagin WR, Wei AC, Schattner MA, Do RKG, Soares KC

pubmed logopapersJul 10 2025
Manual curation of radiographic features in pancreatic cyst registries for data abstraction and longitudinal evaluation is time consuming and limits widespread implementation. We examined the feasibility and accuracy of using large language models (LLMs) to extract clinical variables from radiology reports. A single center retrospective study included patients under surveillance for pancreatic cysts. Nine radiographic elements used to monitor cyst progression were included: cyst size, main pancreatic duct (MPD) size (continuous variable), number of lesions, MPD dilation ≥5mm (categorical), branch duct dilation, presence of solid component, calcific lesion, pancreatic atrophy, and pancreatitis. LLMs (GPT) on the OpenAI GPT-4 platform were employed to extract elements of interest with a zero-shot learning approach using prompting to facilitate annotation without any training data. A manually annotated institutional cyst database was used as the ground truth (GT) for comparison. Overall, 3198 longitudinal scans from 991 patients were included. GPT successfully extracted the selected radiographic elements with high accuracy. Among categorical variables, accuracy ranged from 97% for solid component to 99% for calcific lesions. In the continuous variables, accuracy varied from 92% for cyst size to 97% for MPD size. However, Cohen's Kappa was higher for cyst size (0.92) compared to MPD size (0.82). Lowest accuracy (81%) was noted in the multi-class variable for number of cysts. LLM can accurately extract and curate data from radiology reports for pancreatic cyst surveillance and can be reliably used to assemble longitudinal databases. Future application of this work may potentiate the development of artificial intelligence-based surveillance models.

MeD-3D: A Multimodal Deep Learning Framework for Precise Recurrence Prediction in Clear Cell Renal Cell Carcinoma (ccRCC)

Hasaan Maqsood, Saif Ur Rehman Khan

arxiv logopreprintJul 10 2025
Accurate prediction of recurrence in clear cell renal cell carcinoma (ccRCC) remains a major clinical challenge due to the disease complex molecular, pathological, and clinical heterogeneity. Traditional prognostic models, which rely on single data modalities such as radiology, histopathology, or genomics, often fail to capture the full spectrum of disease complexity, resulting in suboptimal predictive accuracy. This study aims to overcome these limitations by proposing a deep learning (DL) framework that integrates multimodal data, including CT, MRI, histopathology whole slide images (WSI), clinical data, and genomic profiles, to improve the prediction of ccRCC recurrence and enhance clinical decision-making. The proposed framework utilizes a comprehensive dataset curated from multiple publicly available sources, including TCGA, TCIA, and CPTAC. To process the diverse modalities, domain-specific models are employed: CLAM, a ResNet50-based model, is used for histopathology WSIs, while MeD-3D, a pre-trained 3D-ResNet18 model, processes CT and MRI images. For structured clinical and genomic data, a multi-layer perceptron (MLP) is used. These models are designed to extract deep feature embeddings from each modality, which are then fused through an early and late integration architecture. This fusion strategy enables the model to combine complementary information from multiple sources. Additionally, the framework is designed to handle incomplete data, a common challenge in clinical settings, by enabling inference even when certain modalities are missing.

Feasibility study of "double-low" scanning protocol combined with artificial intelligence iterative reconstruction algorithm for abdominal computed tomography enhancement in patients with obesity.

Ji MT, Wang RR, Wang Q, Li HS, Zhao YX

pubmed logopapersJul 9 2025
To evaluate the efficacy of the "double-low" scanning protocol combined with the artificial intelligence iterative reconstruction (AIIR) algorithm for abdominal computed tomography (CT) enhancement in obese patients and to identify the optimal AIIR algorithm level. Patients with a body mass index ≥ 30.00 kg/m<sup>2</sup> who underwent abdominal CT enhancement were randomly assigned to groups A or B. Group A underwent conventional protocol with the Karl 3D iterative reconstruction algorithm at levels 3-5. Group B underwent the "double-low" protocol with AIIR algorithm at levels 1-5. Radiation dose, total iodine intake, along with subjective and objective image quality were recorded. The optimal reconstruction levels for arterial-phase and portal-venous-phase images were identified. Comparisons were made in terms of radiation dose, iodine intake, and image quality. Overall, 150 patients with obesity were collected, and each group consisted of 75 cases. Karl 3D level 5 was the optimal algorithm level for group A, while AIIR level 4 was the optimal algorithm level for group B. AIIR level 4 images in group B exhibited significantly superior subjective and objective image quality than those in Karl 3D level 5 images in group A (P < 0.001). Group B showed reductions in mean CT dose index values, dose-length product, size-specific dose estimate based on water-equivalent diameter, and total iodine intake, compared with group A (P < 0.001). The "double-low" scanning protocol combined with the AIIR algorithm significantly reduces radiation dose and iodine intake during abdominal CT enhancement in obese patients. AIIR level 4 is the optimal reconstruction level for arterial-phase and portal-venous-phase in this patient population.

External Validation of an Upgraded AI Model for Screening Ileocolic Intussusception Using Pediatric Abdominal Radiographs: Multicenter Retrospective Study.

Lee JH, Kim PH, Son NH, Han K, Kang Y, Jeong S, Kim EK, Yoon H, Gatidis S, Vasanawala S, Yoon HM, Shin HJ

pubmed logopapersJul 8 2025
Artificial intelligence (AI) is increasingly used in radiology, but its development in pediatric imaging remains limited, particularly for emergent conditions. Ileocolic intussusception is an important cause of acute abdominal pain in infants and toddlers and requires timely diagnosis to prevent complications such as bowel ischemia or perforation. While ultrasonography is the diagnostic standard due to its high sensitivity and specificity, its accessibility may be limited, especially outside tertiary centers. Abdominal radiographs (AXRs), despite their limited sensitivity, are often the first-line imaging modality in clinical practice. In this context, AI could support early screening and triage by analyzing AXRs and identifying patients who require further ultrasonography evaluation. This study aimed to upgrade and externally validate an AI model for screening ileocolic intussusception using pediatric AXRs with multicenter data and to assess the diagnostic performance of the model in comparison with radiologists of varying experience levels with and without AI assistance. This retrospective study included pediatric patients (≤5 years) who underwent both AXRs and ultrasonography for suspected intussusception. Based on the preliminary study from hospital A, the AI model was retrained using data from hospital B and validated with external datasets from hospitals C and D. Diagnostic performance of the upgraded AI model was evaluated using sensitivity, specificity, and the area under the receiver operating characteristic curve (AUC). A reader study was conducted with 3 radiologists, including 2 trainees and 1 pediatric radiologist, to evaluate diagnostic performance with and without AI assistance. Based on the previously developed AI model trained on 746 patients from hospital A, an additional 431 patients from hospital B (including 143 intussusception cases) were used for further training to develop an upgraded AI model. External validation was conducted using data from hospital C (n=68; 19 intussusception cases) and hospital D (n=90; 30 intussusception cases). The upgraded AI model achieved a sensitivity of 81.7% (95% CI 68.6%-90%) and a specificity of 81.7% (95% CI 73.3%-87.8%), with an AUC of 86.2% (95% CI 79.2%-92.1%) in the external validation set. Without AI assistance, radiologists showed lower performance (overall AUC 64%; sensitivity 49.7%; specificity 77.1%). With AI assistance, radiologists' specificity improved to 93% (difference +15.9%; P<.001), and AUC increased to 79.2% (difference +15.2%; P=.05). The least experienced reader showed the largest improvement in specificity (+37.6%; P<.001) and AUC (+14.7%; P=.08). The upgraded AI model improved diagnostic performance for screening ileocolic intussusception on pediatric AXRs. It effectively enhanced the specificity and overall accuracy of radiologists, particularly those with less experience in pediatric radiology. A user-friendly software platform was introduced to support broader clinical validation and underscores the potential of AI as a screening and triage tool in pediatric emergency settings.

Vision Transformers-Based Deep Feature Generation Framework for Hydatid Cyst Classification in Computed Tomography Images.

Sagik M, Gumus A

pubmed logopapersJul 8 2025
Hydatid cysts, caused by Echinococcus granulosus, form progressively enlarging fluid-filled cysts in organs like the liver and lungs, posing significant public health risks through severe complications or death. This study presents a novel deep feature generation framework utilizing vision transformer models (ViT-DFG) to enhance the classification accuracy of hydatid cyst types. The proposed framework consists of four phases: image preprocessing, feature extraction using vision transformer models, feature selection through iterative neighborhood component analysis, and classification, where the performance of the ViT-DFG model was evaluated and compared across different classifiers such as k-nearest neighbor and multi-layer perceptron (MLP). Both methods were evaluated independently to assess classification performance from different approaches. The dataset, comprising five cyst types, was analyzed for both five-class and three-class classification by grouping the cyst types into active, transition, and inactive categories. Experimental results showed that the proposed VIT-DFG method achieves higher accuracy than existing methods. Specifically, the ViT-DFG framework attained an overall classification accuracy of 98.10% for the three-class and 95.12% for the five-class classifications using 5-fold cross-validation. Statistical analysis through one-way analysis of variance (ANOVA), conducted to evaluate significant differences between models, confirmed significant differences between the proposed framework and individual vision transformer models ( <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>p</mi> <mo><</mo> <mn>0.05</mn></mrow> </math> ). These results highlight the effectiveness of combining multiple vision transformer architectures with advanced feature selection techniques in improving classification performance. The findings underscore the ViT-DFG framework's potential to advance medical image analysis, particularly in hydatid cyst classification, while offering clinical promise through automated diagnostics and improved decision-making.

Machine learning models using non-invasive tests & B-mode ultrasound to predict liver-related outcomes in metabolic dysfunction-associated steatotic liver disease.

Kosick HM, McIntosh C, Bera C, Fakhriyehasl M, Shengir M, Adeyi O, Amiri L, Sebastiani G, Jhaveri K, Patel K

pubmed logopapersJul 8 2025
Advanced metabolic-dysfunction-associated steatotic liver disease (MASLD) fibrosis (F3-4) predicts liver-related outcomes. Serum and elastography-based non-invasive tests (NIT) cannot yet reliably predict MASLD outcomes. The role of B-mode ultrasound (US) for outcome prediction is not yet known. We aimed to evaluate machine learning (ML) algorithms based on simple NIT and US for prediction of adverse liver-related outcomes in MASLD. Retrospective cohort study of adult MASLD patients biopsied between 2010-2021 at one of two Canadian tertiary care centers. Random forest was used to create predictive models for outcomes-hepatic decompensation, liver-related outcomes (decompensation, hepatocellular carcinoma (HCC), liver transplant, and liver-related mortality), HCC, liver-related mortality, F3-4, and fibrotic metabolic dysfunction-associated steatohepatitis (MASH). Diagnostic performance was assessed using area under the curve (AUC). 457 MASLD patients were included with 44.9% F3-4, diabetes prevalence 31.6%, 53.8% male, mean age 49.2 and BMI 32.8 kg/m<sup>2</sup>. 6.3% had an adverse liver-related outcome over mean 43 months follow-up. AUC for ML predictive models were-hepatic decompensation 0.90(0.79-0.98), liver-related outcomes 0.87(0.76-0.96), HCC 0.72(0.29-0.96), liver-related mortality 0.79(0.31-0.98), F3-4 0.83(0.76-0.87), and fibrotic MASH 0.74(0.65-0.85). Biochemical and clinical variables had greatest feature importance overall, compared to US parameters. FIB-4 and AST:ALT ratio were highest ranked biochemical variables, while age was the highest ranked clinical variable. ML models based on clinical, biochemical, and US-based variables accurately predict adverse MASLD outcomes in this multi-centre cohort. Overall, biochemical variables had greatest feature importance. US-based features were not substantial predictors of outcomes in this study.

Development of a deep learning model for predicting skeletal muscle density from ultrasound data: a proof-of-concept study.

Pistoia F, Macciò M, Picasso R, Zaottini F, Marcenaro G, Rinaldi S, Bianco D, Rossi G, Tovt L, Pansecchi M, Sanguinetti S, Hamedani M, Schenone A, Martinoli C

pubmed logopapersJul 8 2025
Reduced muscle mass and function are associated with increased morbidity, and mortality. Ultrasound, despite being cost-effective and portable, is still underutilized in muscle trophism assessment due to its reliance on operator expertise and measurement variability. This proof-of-concept study aimed to overcome these limitations by developing a deep learning model that predicts muscle density, as assessed by CT, using Ultrasound data, exploring the feasibility of a novel Ultrasound-based parameter for muscle trophism.A sample of adult participants undergoing CT examination in our institution's emergency department between May 2022 and March 2023 was enrolled in this single-center study. Ultrasound examinations were performed with a L11-3 MHz probe. The rectus abdominis muscles, selected as target muscles, were scanned in the transverse plane, recording an Ultrasound image per side. For each participant, the same operator calculated the average target muscle density in Hounsfield Units from an axial CT slice closely matching the Ultrasound scanning plane.The final dataset included 1090 Ultrasound images from 551 participants (mean age 67 ± 17, 323 males). A deep learning model was developed to classify Ultrasound images into three muscle-density classes based on CT values. The model achieved promising performance, with a categorical accuracy of 70% and AUC values of 0.89, 0.79, and 0.90 across the three classes.This observational study introduces an innovative approach to automated muscle trophism assessment using Ultrasound imaging. Future efforts should focus on external validation in diverse populations and clinical settings, as well as expanding its application to other muscles.

Deep learning 3D super-resolution radiomics model based on Gd-enhanced MRI for improving preoperative prediction of HCC pathological grading.

Jia F, Wu B, Wang Z, Jiang J, Liu J, Liu Y, Zhou Y, Zhao X, Yang W, Xiong Y, Jiang Y, Zhang J

pubmed logopapersJul 8 2025
The histological grade of hepatocellular carcinoma (HCC) is an important factor associated with early tumor recurrence and prognosis after surgery. Developing a valuable tool to assess this grade is essential for treatment. This study aimed to evaluate the feasibility and efficacy of a deep learning-based three-dimensional super-resolution (SR) magnetic resonance imaging radiomics model for predicting the pathological grade of HCC. A total of 197 HCC patients were included and divided into a training cohort (n = 157) and a testing cohort (n = 40). Three-dimensional SR technology based on deep learning was used to obtain SR hepatobiliary phase (HBP) images from normal-resolution (NR) HBP images. High-dimensional quantitative features were extracted from manually segmented volumes of interest in NRHBP and SRHBP images. The gradient boosting, light gradient boosting machine, and support vector machine were used to develop three-class (well-differentiated vs. moderately differentiated vs. poorly differentiated) and binary radiomics (well-differentiated vs. moderately and poorly differentiated) models, and the predictive performance of these models was evaluated using several measures. All the three-class models using SRHBP images had higher area under the curve (AUC) values than those using NRHBP images. The binary classification models developed with SRHBP images also outperformed those with NRHBP images in distinguishing moderately and poorly differentiated HCC from well-differentiated HCC (AUC = 0.849, sensitivity = 77.8%, specificity = 76.9%, accuracy = 77.5% vs. AUC = 0.603, sensitivity = 48.1%, specificity = 76.9%, accuracy = 57.5%; p = 0.039). Decision curve analysis revealed the clinical value of the models. Deep learning-based three-dimensional SR technology may improve the performance of radiomics models using HBP images for predicting the preoperative pathological grade of HCC.

Progress in fully automated abdominal CT interpretation-an update over the past decade.

Batheja V, Summers R

pubmed logopapersJul 8 2025
This article reviews advancements in fully automated abdominal CT interpretation over the past decade, with a focus on automated image analysis techniques such as quantitative analysis, computer-aided detection, and disease classification. For each abdominal organ, we review segmentation techniques, assess clinical applications and performance, and explore methods for detecting/classifying associated pathologies. We also highlight cutting-edge AI developments, including foundation models, large language models, and multimodal image analysis. While challenges remain in integrating AI into radiology practice, recent progress underscores its growing potential to streamline workflows, reduce radiologist burnout, and enhance patient care.

Mitigating Multi-Sequence 3D Prostate MRI Data Scarcity through Domain Adaptation using Locally-Trained Latent Diffusion Models for Prostate Cancer Detection

Emerson P. Grabke, Babak Taati, Masoom A. Haider

arxiv logopreprintJul 8 2025
Objective: Latent diffusion models (LDMs) could mitigate data scarcity challenges affecting machine learning development for medical image interpretation. The recent CCELLA LDM improved prostate cancer detection performance using synthetic MRI for classifier training but was limited to the axial T2-weighted (AxT2) sequence, did not investigate inter-institutional domain shift, and prioritized radiology over histopathology outcomes. We propose CCELLA++ to address these limitations and improve clinical utility. Methods: CCELLA++ expands CCELLA for simultaneous biparametric prostate MRI (bpMRI) generation, including the AxT2, high b-value diffusion series (HighB) and apparent diffusion coefficient map (ADC). Domain adaptation was investigated by pretraining classifiers on real or LDM-generated synthetic data from an internal institution, followed with fine-tuning on progressively smaller fractions of an out-of-distribution, external dataset. Results: CCELLA++ improved 3D FID for HighB and ADC but not AxT2 (0.013, 0.012, 0.063 respectively) sequences compared to CCELLA (0.060). Classifier pretraining with CCELLA++ bpMRI outperformed real bpMRI in AP and AUC for all domain adaptation scenarios. CCELLA++ pretraining achieved highest classifier performance below 50% (n=665) external dataset volume. Conclusion: Synthetic bpMRI generated by our method can improve downstream classifier generalization and performance beyond real bpMRI or CCELLA-generated AxT2-only images. Future work should seek to quantify medical image sample quality, balance multi-sequence LDM training, and condition the LDM with additional information. Significance: The proposed CCELLA++ LDM can generate synthetic bpMRI that outperforms real data for domain adaptation with a limited target institution dataset. Our code is available at https://github.com/grabkeem/CCELLA-plus-plus
Page 23 of 74733 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.