Sort by:
Page 2 of 654 results

A Foundation Model for Chest X-ray Interpretation with Grounded Reasoning via Online Reinforcement Learning

Qika Lin, Yifan Zhu, Bin Pu, Ling Huang, Haoran Luo, Jingying Ma, Zhen Peng, Tianzhe Zhao, Fangzhi Xu, Jian Zhang, Kai He, Zhonghong Ou, Swapnil Mishra, Mengling Feng

arxiv logopreprintSep 4 2025
Medical foundation models (FMs) have shown tremendous promise amid the rapid advancements in artificial intelligence (AI) technologies. However, current medical FMs typically generate answers in a black-box manner, lacking transparent reasoning processes and locally grounded interpretability, which hinders their practical clinical deployments. To this end, we introduce DeepMedix-R1, a holistic medical FM for chest X-ray (CXR) interpretation. It leverages a sequential training pipeline: initially fine-tuned on curated CXR instruction data to equip with fundamental CXR interpretation capabilities, then exposed to high-quality synthetic reasoning samples to enable cold-start reasoning, and finally refined via online reinforcement learning to enhance both grounded reasoning quality and generation performance. Thus, the model produces both an answer and reasoning steps tied to the image's local regions for each query. Quantitative evaluation demonstrates substantial improvements in report generation (e.g., 14.54% and 31.32% over LLaVA-Rad and MedGemma) and visual question answering (e.g., 57.75% and 23.06% over MedGemma and CheXagent) tasks. To facilitate robust assessment, we propose Report Arena, a benchmarking framework using advanced language models to evaluate answer quality, further highlighting the superiority of DeepMedix-R1. Expert review of generated reasoning steps reveals greater interpretability and clinical plausibility compared to the established Qwen2.5-VL-7B model (0.7416 vs. 0.2584 overall preference). Collectively, our work advances medical FM development toward holistic, transparent, and clinically actionable modeling for CXR interpretation.

Activating Associative Disease-Aware Vision Token Memory for LLM-Based X-ray Report Generation.

Wang X, Wang F, Wang H, Jiang B, Li C, Wang Y, Tian Y, Tang J

pubmed logopapersAug 27 2025
X-ray image based medical report generation achieves significant progress in recent years with the help of large language models, however, these models have not fully exploited the effective information in visual image regions, resulting in reports that are linguistically sound but insufficient in describing key diseases. In this paper, we propose a novel associative memory-enhanced X-ray report generation model that effectively mimics the process of professional doctors writing medical reports. It considers both the mining of global and local visual information and associates historical report information to better complete the writing of the current report. Specifically, given an X-ray image, we first utilize a classification model along with its activation maps to accomplish the mining of visual regions highly associated with diseases and the learning of disease query tokens. Then, we employ a visual Hopfield network to establish memory associations for disease-related tokens, and a report Hopfield network to retrieve report memory information. This process facilitates the generation of high-quality reports based on a large language model and achieves state-of-the-art performance on multiple benchmark datasets, including the IU X-ray, MIMIC-CXR, and Chexpert Plus. The source code and pre-trained models of this work have been released on https://github.com/Event-AHU/Medical_Image_Analysis.

Medico 2025: Visual Question Answering for Gastrointestinal Imaging

Sushant Gautam, Vajira Thambawita, Michael Riegler, Pål Halvorsen, Steven Hicks

arxiv logopreprintAug 14 2025
The Medico 2025 challenge addresses Visual Question Answering (VQA) for Gastrointestinal (GI) imaging, organized as part of the MediaEval task series. The challenge focuses on developing Explainable Artificial Intelligence (XAI) models that answer clinically relevant questions based on GI endoscopy images while providing interpretable justifications aligned with medical reasoning. It introduces two subtasks: (1) answering diverse types of visual questions using the Kvasir-VQA-x1 dataset, and (2) generating multimodal explanations to support clinical decision-making. The Kvasir-VQA-x1 dataset, created from 6,500 images and 159,549 complex question-answer (QA) pairs, serves as the benchmark for the challenge. By combining quantitative performance metrics and expert-reviewed explainability assessments, this task aims to advance trustworthy Artificial Intelligence (AI) in medical image analysis. Instructions, data access, and an updated guide for participation are available in the official competition repository: https://github.com/simula/MediaEval-Medico-2025

A Chain of Diagnosis Framework for Accurate and Explainable Radiology Report Generation

Haibo Jin, Haoxuan Che, Sunan He, Hao Chen

arxiv logopreprintAug 13 2025
Despite the progress of radiology report generation (RRG), existing works face two challenges: 1) The performances in clinical efficacy are unsatisfactory, especially for lesion attributes description; 2) the generated text lacks explainability, making it difficult for radiologists to trust the results. To address the challenges, we focus on a trustworthy RRG model, which not only generates accurate descriptions of abnormalities, but also provides basis of its predictions. To this end, we propose a framework named chain of diagnosis (CoD), which maintains a chain of diagnostic process for clinically accurate and explainable RRG. It first generates question-answer (QA) pairs via diagnostic conversation to extract key findings, then prompts a large language model with QA diagnoses for accurate generation. To enhance explainability, a diagnosis grounding module is designed to match QA diagnoses and generated sentences, where the diagnoses act as a reference. Moreover, a lesion grounding module is designed to locate abnormalities in the image, further improving the working efficiency of radiologists. To facilitate label-efficient training, we propose an omni-supervised learning strategy with clinical consistency to leverage various types of annotations from different datasets. Our efforts lead to 1) an omni-labeled RRG dataset with QA pairs and lesion boxes; 2) a evaluation tool for assessing the accuracy of reports in describing lesion location and severity; 3) extensive experiments to demonstrate the effectiveness of CoD, where it outperforms both specialist and generalist models consistently on two RRG benchmarks and shows promising explainability by accurately grounding generated sentences to QA diagnoses and images.

ChatRadio-Valuer: A Chat Large Language Model for Generalizable Radiology Impression Generation on Multi-institution and Multi-system Data.

Zhong T, Zhao W, Zhang Y, Pan Y, Dong P, Jiang Z, Jiang H, Zhou Y, Kui X, Shang Y, Zhao L, Yang L, Wei Y, Li Z, Zhang J, Yang L, Chen H, Zhao H, Liu Y, Zhu N, Li Y, Wang Y, Yao J, Wang J, Zeng Y, He L, Zheng C, Zhang Z, Li M, Liu Z, Dai H, Wu Z, Zhang L, Zhang S, Cai X, Hu X, Zhao S, Jiang X, Zhang X, Liu W, Li X, Zhu D, Guo L, Shen D, Han J, Liu T, Liu J, Zhang T

pubmed logopapersAug 11 2025
Achieving clinical level performance and widespread deployment for generating radiology impressions encounters a giant challenge for conventional artificial intelligence models tailored to specific diseases and organs. Concurrent with the increasing accessibility of radiology reports and advancements in modern general AI techniques, the emergence and potential of deployable radiology AI exploration have been bolstered. Here, we present ChatRadio-Valuer, the first general radiology diagnosis large language model for localized deployment within hospitals and being close to clinical use for multi-institution and multi-system diseases. ChatRadio-Valuer achieved 15 state-of-the-art results across five human systems and six institutions in clinical-level events (n=332,673) through rigorous and full-spectrum assessment, including engineering metrics, clinical validation, and efficiency evaluation. Notably, it exceeded OpenAI's GPT-3.5 and GPT-4 models, achieving superior performance in comprehensive disease diagnosis compared to the average level of radiology experts. Besides, ChatRadio-Valuer supports zero-shot transfer learning, greatly boosting its effectiveness as a radiology assistant, while ensuring adherence to privacy standards and being readily utilized for large-scale patient populations. Our expeditions suggest the development of localized LLMs would become an imperative avenue in hospital applications.

Leveraging an Image-Enhanced Cross-Modal Fusion Network for Radiology Report Generation.

Guo Y, Hou X, Liu Z, Zhang Y

pubmed logopapersAug 11 2025
Radiology report generation (RRG) tasks leverage computer-aided technology to automatically produce descriptive text reports for medical images, aiming to ease radiologists' workload, reduce misdiagnosis rates, and lessen the pressure on medical resources. However, previous works have yet to focus on enhancing feature extraction of low-quality images, incorporating cross-modal interaction information, and mitigating latency in report generation. We propose an Image-Enhanced Cross-Modal Fusion Network (IFNet) for automatic RRG to tackle these challenges. IFNet includes three key components. First, the image enhancement module enhances the detailed representation of typical and atypical structures in X-ray images, thereby boosting detection success rates. Second, the cross-modal fusion networks efficiently and comprehensively capture the interactions of cross-modal features. Finally, a more efficient transformer report generation module is designed to optimize report generation efficiency while being suitable for low-resource devices. Experimental results on public datasets IU X-ray and MIMIC-CXR demonstrate that IFNet significantly outperforms the current state-of-the-art methods.

AIMR-MediTell: Attention-Infused Mask RNN for Medical Image Interpretation and Report Generation.

Chen L, Yang L, Bedir O

pubmed logopapersAug 7 2025
Medical diagnostics often rely on the interpretation of complex medical images. However, manual analysis and report generation by medical practitioners are time-consuming, and the inherent ambiguity in chest X-rays presents significant challenges for automated systems in producing interpretable results. To address this, we propose Attention-Infused Mask Recurrent Neural Network (AIMR-MediTell), a deep learning framework integrating instance segmentation using Mask RCNN with attention-based feature extraction to identify and highlight abnormal regions in chest X-rays. This framework also incorporates an encoder-decoder structure with pretrained BioWordVec embeddings to generate explanatory reports based on augmented images. We evaluated AIMR-MediTell on the Open-I dataset, achieving a BLEU-4 score of 0.415, outperforming existing models. Our results demonstrate the effectiveness of the proposed model, showing that incorporating masked regions enhances report accuracy and interpretability. By identifying malfunction areas and automating report generation for X-ray images, our approach has the potential to significantly improve the efficiency and accuracy of medical image analysis.

Improving Radiology Report Generation with Semantic Understanding.

Ahn S, Park H, Yoo J, Choi J

pubmed logopapersAug 7 2025
This study proposes RRG-LLM, a model designed to enhance RRG by effectively learning medical domain with minimal computational resources. Initially, LLM is finetuned by LoRA, enabling efficient adaptation to the medical domain. Subsequently, only the linear projection layer that project the image into text is finetuned to extract important information from the radiology image and project it onto the text dimension. Proposed model demonstrated notable improvements in report generation. The performance of ROUGE-L was improved by 0.096 (51.7%) and METEOR by 0.046 (42.85%) compared to the baseline model.

CT-GRAPH: Hierarchical Graph Attention Network for Anatomy-Guided CT Report Generation

Hamza Kalisch, Fabian Hörst, Jens Kleesiek, Ken Herrmann, Constantin Seibold

arxiv logopreprintAug 7 2025
As medical imaging is central to diagnostic processes, automating the generation of radiology reports has become increasingly relevant to assist radiologists with their heavy workloads. Most current methods rely solely on global image features, failing to capture fine-grained organ relationships crucial for accurate reporting. To this end, we propose CT-GRAPH, a hierarchical graph attention network that explicitly models radiological knowledge by structuring anatomical regions into a graph, linking fine-grained organ features to coarser anatomical systems and a global patient context. Our method leverages pretrained 3D medical feature encoders to obtain global and organ-level features by utilizing anatomical masks. These features are further refined within the graph and then integrated into a large language model to generate detailed medical reports. We evaluate our approach for the task of report generation on the large-scale chest CT dataset CT-RATE. We provide an in-depth analysis of pretrained feature encoders for CT report generation and show that our method achieves a substantial improvement of absolute 7.9\% in F1 score over current state-of-the-art methods. The code is publicly available at https://github.com/hakal104/CT-GRAPH.

R2GenKG: Hierarchical Multi-modal Knowledge Graph for LLM-based Radiology Report Generation

Futian Wang, Yuhan Qiao, Xiao Wang, Fuling Wang, Yuxiang Zhang, Dengdi Sun

arxiv logopreprintAug 5 2025
X-ray medical report generation is one of the important applications of artificial intelligence in healthcare. With the support of large foundation models, the quality of medical report generation has significantly improved. However, challenges such as hallucination and weak disease diagnostic capability still persist. In this paper, we first construct a large-scale multi-modal medical knowledge graph (termed M3KG) based on the ground truth medical report using the GPT-4o. It contains 2477 entities, 3 kinds of relations, 37424 triples, and 6943 disease-aware vision tokens for the CheXpert Plus dataset. Then, we sample it to obtain multi-granularity semantic graphs and use an R-GCN encoder for feature extraction. For the input X-ray image, we adopt the Swin-Transformer to extract the vision features and interact with the knowledge using cross-attention. The vision tokens are fed into a Q-former and retrieved the disease-aware vision tokens using another cross-attention. Finally, we adopt the large language model to map the semantic knowledge graph, input X-ray image, and disease-aware vision tokens into language descriptions. Extensive experiments on multiple datasets fully validated the effectiveness of our proposed knowledge graph and X-ray report generation framework. The source code of this paper will be released on https://github.com/Event-AHU/Medical_Image_Analysis.
Page 2 of 654 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.