Sort by:
Page 2 of 25243 results

Assessment of AI-accelerated T2-weighted brain MRI, based on clinical ratings and image quality evaluation.

Nonninger JN, Kienast P, Pogledic I, Mallouhi A, Barkhof F, Trattnig S, Robinson SD, Kasprian G, Haider L

pubmed logopapersJul 1 2025
To compare clinical ratings and signal-to-noise ratio (SNR) measures of a commercially available Deep Learning-based MRI reconstruction method (T2<sub>(DR)</sub>) against conventional T2- turbo spin echo brain MRI (T2<sub>(CN)</sub>). 100 consecutive patients with various neurological conditions underwent both T2<sub>(DR)</sub> and T2<sub>(CN)</sub> on a Siemens Vida 3 T scanner with a 64-channel head coil in the same examination. Acquisition times were 3.33 min for T2<sub>(CN)</sub> and 1.04 min for T2<sub>(DR)</sub>. Four neuroradiologists evaluated overall image quality (OIQ), diagnostic safety (DS), and image artifacts (IA), blinded to the acquisition mode. SNR and SNR<sub>eff</sub> (adjusted for acquisition time) were calculated for air, grey- and white matter, and cerebrospinal fluid. The mean patient age was 43.6 years (SD 20.3), with 54 females. The distribution of non-diagnostic ratings did not differ significantly between T2<sub>(CN)</sub> and T2<sub>(DR)</sub> (IA p = 0.108; OIQ: p = 0.700 and DS: p = 0.652). However, when considering the full spectrum of ratings, significant differences favouring T2<sub>(CN)</sub> emerged in OIQ (p = 0.003) and IA (p < 0.001). T2<sub>(CN)</sub> had higher SNR (157.9, SD 123.4) than T2<sub>(DR)</sub> (112.8, SD 82.7), p < 0.001, but T2<sub>(DR)</sub> demonstrated superior SNR<sub>eff</sub> (14.1, SD 10.3) compared to T2<sub>(CN)</sub> (10.8, SD 8.5), p < 0.001. Our results suggest that while T2<sub>(DR)</sub> may be clinically applicable for a diagnostic setting, it does not fully match the quality of high-standard conventional T2<sub>(CN)</sub>, MRI acquisitions.

One for multiple: Physics-informed synthetic data boosts generalizable deep learning for fast MRI reconstruction.

Wang Z, Yu X, Wang C, Chen W, Wang J, Chu YH, Sun H, Li R, Li P, Yang F, Han H, Kang T, Lin J, Yang C, Chang S, Shi Z, Hua S, Li Y, Hu J, Zhu L, Zhou J, Lin M, Guo J, Cai C, Chen Z, Guo D, Yang G, Qu X

pubmed logopapersJul 1 2025
Magnetic resonance imaging (MRI) is a widely used radiological modality renowned for its radiation-free, comprehensive insights into the human body, facilitating medical diagnoses. However, the drawback of prolonged scan times hinders its accessibility. The k-space undersampling offers a solution, yet the resultant artifacts necessitate meticulous removal during image reconstruction. Although deep learning (DL) has proven effective for fast MRI image reconstruction, its broader applicability across various imaging scenarios has been constrained. Challenges include the high cost and privacy restrictions associated with acquiring large-scale, diverse training data, coupled with the inherent difficulty of addressing mismatches between training and target data in existing DL methodologies. Here, we present a novel Physics-Informed Synthetic data learning Framework for fast MRI, called PISF. PISF marks a breakthrough by enabling generalizable DL for multi-scenario MRI reconstruction through a single trained model. Our approach separates the reconstruction of a 2D image into many 1D basic problems, commencing with 1D data synthesis to facilitate generalization. We demonstrate that training DL models on synthetic data, coupled with enhanced learning techniques, yields in vivo MRI reconstructions comparable to or surpassing those of models trained on matched realistic datasets, reducing the reliance on real-world MRI data by up to 96 %. With a single trained model, our PISF supports the high-quality reconstruction under 4 sampling patterns, 5 anatomies, 6 contrasts, 5 vendors, and 7 centers, exhibiting remarkable generalizability. Its adaptability to 2 neuro and 2 cardiovascular patient populations has been validated through evaluations by 10 experienced medical professionals. In summary, PISF presents a feasible and cost-effective way to significantly boost the widespread adoption of DL in various fast MRI applications.

Cycle-conditional diffusion model for noise correction of diffusion-weighted images using unpaired data.

Zhu P, Liu C, Fu Y, Chen N, Qiu A

pubmed logopapersJul 1 2025
Diffusion-weighted imaging (DWI) is a key modality for studying brain microstructure, but its signals are highly susceptible to noise due to the thermal motion of water molecules and interactions with tissue microarchitecture, leading to significant signal attenuation and a low signal-to-noise ratio (SNR). In this paper, we propose a novel approach, a Cycle-Conditional Diffusion Model (Cycle-CDM) using unpaired data learning, aimed at improving DWI quality and reliability through noise correction. Cycle-CDM leverages a cycle-consistent translation architecture to bridge the domain gap between noise-contaminated and noise-free DWIs, enabling the restoration of high-quality images without requiring paired datasets. By utilizing two conditional diffusion models, Cycle-CDM establishes data interrelationships between the two types of DWIs, while incorporating synthesized anatomical priors from the cycle translation process to guide noise removal. In addition, we introduce specific constraints to preserve anatomical fidelity, allowing Cycle-CDM to effectively learn the underlying noise distribution and achieve accurate denoising. Our experiments conducted on simulated datasets, as well as children and adolescents' datasets with strong clinical relevance. Our results demonstrate that Cycle-CDM outperforms comparative methods, such as U-Net, CycleGAN, Pix2Pix, MUNIT and MPPCA, in terms of noise correction performance. We demonstrated that Cycle-CDM can be generalized to DWIs with head motion when they were acquired using different MRI scannsers. Importantly, the denoised DWI data produced by Cycle-CDM exhibit accurate preservation of underlying tissue microstructure, thus substantially improving their medical applicability.

Radiation and contrast dose reduction in coronary CT angiography for slender patients with 70 kV tube voltage and deep learning image reconstruction.

Ren Z, Shen L, Zhang X, He T, Yu N, Zhang M

pubmed logopapersJul 1 2025
To evaluate the radiation and contrast dose reduction potential of combining 70 kV with deep learning image reconstruction (DLIR) in coronary computed tomography angiography (CCTA) for slender patients with body-mass-index (BMI) ≤25 kg/m2. Sixty patients for CCTA were randomly divided into 2 groups: group A with 120 kV and contrast agent dose of 0.8 mL/kg, and group B with 70 kV and contrast agent dose of 0.5 mL/kg. Group A used adaptive statistical iterative reconstruction-V (ASIR-V) with 50% strength level (50%ASIR-V) while group B used 50% ASIR-V, DLIR of low level (DLIR-L), DLIR of medium level (DLIR-M), and DLIR of high level (DLIR-H) for image reconstruction. The CT values and SD values of coronary arteries and pericardial fat were measured, and signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. The image quality was subjectively evaluated by 2 radiologists using a five-point scoring system. The effective radiation dose (ED) and contrast dose were calculated and compared. Group B significantly reduced radiation dose by 75.6% and contrast dose by 32.9% compared to group A. Group B exhibited higher CT values of coronary arteries than group A, and DLIR-L, DLIR-M, and DLIR-H in group B provided higher SNR values and CNR values and subjective scores, among which DLIR-H had the lowest noise and highest subjective scores. Using 70 kV combined with DLIR significantly reduces radiation and contrast dose while improving image quality in CCTA for slender patients with DLIR-H having the best effect on improving image quality. The 70 kV and DLIR-H may be used in CCTA for slender patients to significantly reduce radiation dose and contrast dose while improving image quality.

Phantom-based evaluation of image quality in Transformer-enhanced 2048-matrix CT imaging at low and ultralow doses.

Li Q, Liu L, Zhang Y, Zhang L, Wang L, Pan Z, Xu M, Zhang S, Xie X

pubmed logopapersJul 1 2025
To compare the quality of standard 512-matrix, standard 1024-matrix, and Swin2SR-based 2048-matrix phantom images under different scanning protocols. The Catphan 600 phantom was scanned using a multidetector CT scanner under two protocols: 120 kV/100 mA (CT dose index volume = 3.4 mGy) to simulate low-dose CT, and 70 kV/40 mA (0.27 mGy) to simulate ultralow-dose CT. Raw data were reconstructed into standard 512-matrix images using three methods: filtered back projection (FBP), adaptive statistical iterative reconstruction at 40% intensity (ASIR-V), and deep learning image reconstruction at high intensity (DLIR-H). The Swin2SR super-resolution model was used to generate 2048-matrix images (Swin2SR-2048), while the super-resolution convolutional neural network (SRCNN) model generated 2048-matrix images (SRCNN-2048). The quality of 2048-matrix images generated by the two models (Swin2SR and SRCNN) was compared. Image quality was evaluated by ImQuest software (v7.2.0.0, Duke University) based on line pair clarity, task-based transfer function (TTF), image noise, and noise power spectrum (NPS). At equivalent radiation doses and reconstruction method, Swin2SR-2048 images identified more line pairs than both standard-512 and standard-1024 images. Except for the 0.27 mGy/DLIR-H/standard kernel sequence, TTF-50% of Teflon increased after super-resolution processing. Statistically significant differences in TTF-50% were observed between the standard 512, 1024, and Swin2SR-2048 images (all p < 0.05). Swin2SR-2048 images exhibited lower image noise and NPS<sub>peak</sub> compared to both standard 512- and 1024-matrix images, with significant differences observed in all three matrix types (all p < 0.05). Swin2SR-2048 images also demonstrated superior quality compared to SRCNN-2048, with significant differences in image noise (p < 0.001), NPS<sub>peak</sub> (p < 0.05), and TTF-50% for Teflon (p < 0.05). Transformer-enhanced 2048-matrix CT images improve spatial resolution and reduce image noise compared to standard-512 and -1024 matrix images.

Deep Guess acceleration for explainable image reconstruction in sparse-view CT.

Loli Piccolomini E, Evangelista D, Morotti E

pubmed logopapersJul 1 2025
Sparse-view Computed Tomography (CT) is an emerging protocol designed to reduce X-ray dose radiation in medical imaging. Reconstructions based on the traditional Filtered Back Projection algorithm suffer from severe artifacts due to sparse data. In contrast, Model-Based Iterative Reconstruction (MBIR) algorithms, though better at mitigating noise through regularization, are too computationally costly for clinical use. This paper introduces a novel technique, denoted as the Deep Guess acceleration scheme, using a trained neural network both to quicken the regularized MBIR and to enhance the reconstruction accuracy. We integrate state-of-the-art deep learning tools to initialize a clever starting guess for a proximal algorithm solving a non-convex model and thus computing a (mathematically) interpretable solution image in a few iterations. Experimental results on real and synthetic CT images demonstrate the Deep Guess effectiveness in (very) sparse tomographic protocols, where it overcomes its mere variational counterpart and many data-driven approaches at the state of the art. We also consider a ground truth-free implementation and test the robustness of the proposed framework to noise.

CZT-based photon-counting-detector CT with deep-learning reconstruction: image quality and diagnostic confidence for lung tumor assessment.

Sasaki T, Kuno H, Nomura K, Muramatsu Y, Aokage K, Samejima J, Taki T, Goto E, Wakabayashi M, Furuya H, Taguchi H, Kobayashi T

pubmed logopapersJul 1 2025
This is a preliminary analysis of one of the secondary endpoints in the prospective study cohort. The aim of this study is to assess the image quality and diagnostic confidence for lung cancer of CT images generated by using cadmium-zinc-telluride (CZT)-based photon-counting-detector-CT (PCD-CT) and comparing these super-high-resolution (SHR) images with conventional normal-resolution (NR) CT images. Twenty-five patients (median age 75 years, interquartile range 66-78 years, 18 men and 7 women) with 29 lung nodules overall (including two patients with 4 and 2 nodules, respectively) were enrolled to undergo PCD-CT. Three types of images were reconstructed: a 512 × 512 matrix with adaptive iterative dose reduction 3D (AIDR 3D) as the NR<sub>AIDR3D</sub> image, a 1024 × 1024 matrix with AIDR 3D as the SHR<sub>AIDR3D</sub> image, and a 1024 × 1024 matrix with deep-learning reconstruction (DLR) as the SHR<sub>DLR</sub> image. For qualitative analysis, two radiologists evaluated the matched reconstructed series twice (NR<sub>AIDR3D</sub> vs. SHR<sub>AIDR3D</sub> and SHR<sub>AIDR3D</sub> vs. SHR<sub>DLR</sub>) and scored the presence of imaging findings, such as spiculation, lobulation, appearance of ground-glass opacity or air bronchiologram, image quality, and diagnostic confidence, using a 5-point Likert scale. For quantitative analysis, contrast-to-noise ratios (CNRs) of the three images were compared. In the qualitative analysis, compared to NR<sub>AIDR3D</sub>, SHR<sub>AIDR3D</sub> yielded higher image quality and diagnostic confidence, except for image noise (all P < 0.01). In comparison with SHR<sub>AIDR3D</sub>, SHR<sub>DLR</sub> yielded higher image quality and diagnostic confidence (all P < 0.01). In the quantitative analysis, CNRs in the modified NR<sub>AIDR3D</sub> and SHR<sub>DLR</sub> groups were higher than those in the SHR<sub>AIDR3D</sub> group (P = 0.003, <0.001, respectively). In PCD-CT, SHR<sub>DLR</sub> images provided the highest image quality and diagnostic confidence for lung tumor evaluation, followed by SHR<sub>AIDR3D</sub> and NR<sub>AIDR3D</sub> images. DLR demonstrated superior noise reduction compared to other reconstruction methods.

Super-resolution deep learning reconstruction for improved quality of myocardial CT late enhancement.

Takafuji M, Kitagawa K, Mizutani S, Hamaguchi A, Kisou R, Sasaki K, Funaki Y, Iio K, Ichikawa K, Izumi D, Okabe S, Nagata M, Sakuma H

pubmed logopapersJul 1 2025
Myocardial computed tomography (CT) late enhancement (LE) allows assessment of myocardial scarring. Super-resolution deep learning image reconstruction (SR-DLR) trained on data acquired from ultra-high-resolution CT may improve image quality for CT-LE. Therefore, this study investigated image noise and image quality with SR-DLR compared with conventional DLR (C-DLR) and hybrid iterative reconstruction (hybrid IR). We retrospectively analyzed 30 patients who underwent CT-LE using 320-row CT. The CT protocol comprised stress dynamic CT perfusion, coronary CT angiography, and CT-LE. CT-LE images were reconstructed using three different algorithms: SR-DLR, C-DLR, and hybrid IR. Image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and qualitative image quality scores are in terms of noise reduction, sharpness, visibility of scar and myocardial boarder, and overall image quality. Inter-observer differences in myocardial scar sizing in CT-LE by the three algorithms were also compared. SR-DLR significantly decreased image noise by 35% compared to C-DLR (median 6.2 HU, interquartile range [IQR] 5.6-7.2 HU vs 9.6 HU, IQR 8.4-10.7 HU; p < 0.001) and by 37% compared to hybrid IR (9.8 HU, IQR 8.5-12.0 HU; p < 0.001). SNR and CNR of CT-LE reconstructed using SR-DLR were significantly higher than with C-DLR (both p < 0.001) and hybrid IR (both p < 0.05). All qualitative image quality scores were higher with SR-DLR than those with C-DLR and hybrid IR (all p < 0.001). The inter-observer differences in scar sizing were reduced with SR-DLR and C-DLR compared with hybrid IR (both p = 0.02). SR-DLR reduces image noise and improves image quality of myocardial CT-LE compared with C-DLR and hybrid IR techniques and improves inter-observer reproducibility of scar sizing compared to hybrid IR. The SR-DLR approach has the potential to improve the assessment of myocardial scar by CT late enhancement.

Data-efficient generalization of AI transformers for noise reduction in ultra-fast lung PET scans.

Wang J, Zhang X, Miao Y, Xue S, Zhang Y, Shi K, Guo R, Li B, Zheng G

pubmed logopapersJul 1 2025
Respiratory motion during PET acquisition may produce lesion blurring. Ultra-fast 20-second breath-hold (U2BH) PET reduces respiratory motion artifacts, but the shortened scanning time increases statistical noise and may affect diagnostic quality. This study aims to denoise the U2BH PET images using a deep learning (DL)-based method. The study was conducted on two datasets collected from five scanners where the first dataset included 1272 retrospectively collected full-time PET data while the second dataset contained 46 prospectively collected U2BH and the corresponding full-time PET/CT images. A robust and data-efficient DL method called mask vision transformer (Mask-ViT) was proposed which, after fine-tuned on a limited number of training data from a target scanner, was directly applied to unseen testing data from new scanners. The performance of Mask-ViT was compared with state-of-the-art DL methods including U-Net and C-Gan taking the full-time PET images as the reference. Statistical analysis on image quality metrics were carried out with Wilcoxon signed-rank test. For clinical evaluation, two readers scored image quality on a 5-point scale (5 = excellent) and provided a binary assessment for diagnostic quality evaluation. The U2BH PET images denoised by Mask-ViT showed statistically significant improvement over U-Net and C-Gan on image quality metrics (p < 0.05). For clinical evaluation, Mask-ViT exhibited a lesion detection accuracy of 91.3%, 90.4% and 91.7%, when it was evaluated on three different scanners. Mask-ViT can effectively enhance the quality of the U2BH PET images in a data-efficient generalization setup. The denoised images meet clinical diagnostic requirements of lesion detectability.

SHFormer: Dynamic spectral filtering convolutional neural network and high-pass kernel generation transformer for adaptive MRI reconstruction.

Ramanarayanan S, G S R, Fahim MA, Ram K, Venkatesan R, Sivaprakasam M

pubmed logopapersJul 1 2025
Attention Mechanism (AM) selectively focuses on essential information for imaging tasks and captures relationships between regions from distant pixel neighborhoods to compute feature representations. Accelerated magnetic resonance image (MRI) reconstruction can benefit from AM, as the imaging process involves acquiring Fourier domain measurements that influence the image representation in a non-local manner. However, AM-based models are more adept at capturing low-frequency information and have limited capacity in constructing high-frequency representations, restricting the models to smooth reconstruction. Secondly, AM-based models need mode-specific retraining for multimodal MRI data as their knowledge is restricted to local contextual variations within modes that might be inadequate to capture the diverse transferable features across heterogeneous data domains. To address these challenges, we propose a neuromodulation-based discriminative multi-spectral AM for scalable MRI reconstruction, that can (i) propagate the context-aware high-frequency details for high-quality image reconstruction, and (ii) capture features reusable to deviated unseen domains in multimodal MRI, to offer high practical value for the healthcare industry and researchers. The proposed network consists of a spectral filtering convolutional neural network to capture mode-specific transferable features to generalize to deviated MRI data domains and a dynamic high-pass kernel generation transformer that focuses on high-frequency details for improved reconstruction. We have evaluated our model on various aspects, such as comparative studies in supervised and self-supervised learning, diffusion model-based training, closed-set and open-set generalization under heterogeneous MRI data, and interpretation-based analysis. Our results show that the proposed method offers scalable and high-quality reconstruction with best improvement margins of ∼1 dB in PSNR and ∼0.01 in SSIM under unseen scenarios. Our code is available at https://github.com/sriprabhar/SHFormer.
Page 2 of 25243 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.