Sort by:
Page 2 of 432 results

Evaluation of an artificial intelligence noise reduction tool for conventional X-ray imaging - a visual grading study of pediatric chest examinations at different radiation dose levels using anthropomorphic phantoms.

Hultenmo M, Pernbro J, Ahlin J, Bonnier M, Båth M

pubmed logopapersMay 13 2025
Noise reduction tools developed with artificial intelligence (AI) may be implemented to improve image quality and reduce radiation dose, which is of special interest in the more radiosensitive pediatric population. The aim of the present study was to examine the effect of the AI-based intelligent noise reduction (INR) on image quality at different dose levels in pediatric chest radiography. Anteroposterior and lateral images of two anthropomorphic phantoms were acquired with both standard noise reduction and INR at different dose levels. In total, 300 anteroposterior and 420 lateral images were included. Image quality was evaluated by three experienced pediatric radiologists. Gradings were analyzed with visual grading characteristics (VGC) resulting in area under the VGC curve (AUC<sub>VGC</sub>) values and associated confidence intervals (CI). Image quality of different anatomical structures and overall clinical image quality were statistically significantly better in the anteroposterior INR images than in the corresponding standard noise reduced images at each dose level. Compared with reference anteroposterior images at a dose level of 100% with standard noise reduction, the image quality of the anteroposterior INR images was graded as significantly better at dose levels of ≥ 80%. Statistical significance was also achieved at lower dose levels for some structures. The assessments of the lateral images showed similar trends but with fewer significant results. The results of the present study indicate that the AI-based INR may potentially be used to improve image quality at a specific dose level or to reduce dose and maintain the image quality in pediatric chest radiography.

The utility of low-dose pre-operative CT of ovarian tumor with artificial intelligence iterative reconstruction for diagnosing peritoneal invasion, lymph node and hepatic metastasis.

Cai X, Han J, Zhou W, Yang F, Liu J, Wang Q, Li R

pubmed logopapersMay 13 2025
Diagnosis of peritoneal invasion, lymph node metastasis, and hepatic metastasis is crucial in the decision-making process of ovarian tumor treatment. This study aimed to test the feasibility of low-dose abdominopelvic CT with an artificial intelligence iterative reconstruction (AIIR) for diagnosing peritoneal invasion, lymph node metastasis, and hepatic metastasis in pre-operative imaging of ovarian tumor. This study prospectively enrolled 88 patients with pathology-confirmed ovarian tumors, where routine-dose CT at portal venous phase (120 kVp/ref. 200 mAs) with hybrid iterative reconstruction (HIR) was followed by a low-dose scan (120 kVp/ref. 40 mAs) with AIIR. The performance of diagnosing peritoneal invasion and lymph node metastasis was assessed using receiver operating characteristic (ROC) analysis with pathological results serving as the reference. The hepatic parenchymal metastases were diagnosed and signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were measured. The perihepatic structures were also scored on the clarity of porta hepatis, gallbladder fossa and intersegmental fissure. The effective dose of low-dose CT was 79.8% lower than that of routine-dose scan (2.64 ± 0.46 vs. 13.04 ± 2.25 mSv, p < 0.001). The low-dose AIIR showed similar area under the ROC curve (AUC) with routine-dose HIR for diagnosing both peritoneal invasion (0.961 vs. 0.960, p = 0.734) and lymph node metastasis (0.711 vs. 0.715, p = 0.355). The 10 hepatic parenchymal metastases were all accurately diagnosed on the two image sets. The low-dose AIIR exhibited higher SNR and CNR for hepatic parenchymal metastases and superior clarity for perihepatic structures. In low-dose pre-operative CT of ovarian tumor, AIIR delivers similar diagnostic accuracy for peritoneal invasion, lymph node metastasis, and hepatic metastasis, as compared to routine-dose abdominopelvic CT. It is feasible and diagnostically safe to apply up to 80% dose reduction in CT imaging of ovarian tumor by using AIIR.

Accelerating prostate rs-EPI DWI with deep learning: Halving scan time, enhancing image quality, and validating in vivo.

Zhang P, Feng Z, Chen S, Zhu J, Fan C, Xia L, Min X

pubmed logopapersMay 12 2025
This study aims to evaluate the feasibility and effectiveness of deep learning-based super-resolution techniques to reduce scan time while preserving image quality in high-resolution prostate diffusion-weighted imaging (DWI) with readout-segmented echo-planar imaging (rs-EPI). We retrospectively and prospectively analyzed prostate rs-EPI DWI data, employing deep learning super-resolution models, particularly the Multi-Scale Self-Similarity Network (MSSNet), to reconstruct low-resolution images into high-resolution images. Performance metrics such as structural similarity index (SSIM), Peak signal-to-noise ratio (PSNR), and normalized root mean squared error (NRMSE) were used to compare reconstructed images against the high-resolution ground truth (HR<sub>GT</sub>). Additionally, we evaluated the apparent diffusion coefficient (ADC) values and signal-to-noise ratio (SNR) across different models. The MSSNet model demonstrated superior performance in image reconstruction, achieving maximum SSIM values of 0.9798, and significant improvements in PSNR and NRMSE compared to other models. The deep learning approach reduced the rs-EPI DWI scan time by 54.4 % while maintaining image quality comparable to HR<sub>GT</sub>. Pearson correlation analysis revealed a strong correlation between ADC values from deep learning-reconstructed images and the ground truth, with differences remaining within 5 %. Furthermore, all models showed significant SNR enhancement, with MSSNet performing best across most cases. Deep learning-based super-resolution techniques, particularly MSSNet, effectively reduce scan time and enhance image quality in prostate rs-EPI DWI, making them promising tools for clinical applications.

Effect of Deep Learning-Based Image Reconstruction on Lesion Conspicuity of Liver Metastases in Pre- and Post-contrast Enhanced Computed Tomography.

Ichikawa Y, Hasegawa D, Domae K, Nagata M, Sakuma H

pubmed logopapersMay 12 2025
The purpose of this study was to investigate the utility of deep learning image reconstruction at medium and high intensity levels (DLIR-M and DLIR-H, respectively) for better delineation of liver metastases in pre-contrast and post-contrast CT, compared to conventional hybrid iterative reconstruction (IR) methods. Forty-one patients with liver metastases who underwent abdominal CT were studied. The raw data were reconstructed with three different algorithms: hybrid IR (ASiR-V 50%), DLIR-M (TrueFildelity-M), and DLIR-H (TrueFildelity-H). Three experienced radiologists independently rated the lesion conspicuity of liver metastases on a qualitative 5-point scale (score 1 = very poor; score 5 = excellent). The observers also selected each image series for pre- and post-contrast CT per patient that was considered most preferable for liver metastases assessment. For pre-contrast CT, lesion conspicuity scores for DLIR-H and DLIR-M were significantly higher than those for hybrid IR for two of the three observers, while there was no significant difference for one observer. For post-contrast CT, the lesion conspicuity scores for DLIR-H images were significantly higher than those for DLIR-M images for two of the three observers on post-contrast CT (Observer 1: DLIR-H, 4.3 ± 0.8 vs. DLIR-M, 3.9 ± 0.9, p = 0.0006; Observer 3: DLIR-H, 4.6 ± 0.6 vs. DLIR-M, 4.3 ± 0.6, p = 0.0013). For post-contrast CT, all observers most often selected DLIR-H as the best reconstruction method for the diagnosis of liver metastases. However, in the pre-contrast CT, there was variation among the three observers in determining the most preferred image reconstruction method, and DLIR was not necessarily preferred over hybrid IR for the diagnosis of liver metastases.

Learning-based multi-material CBCT image reconstruction with ultra-slow kV switching.

Ma C, Zhu J, Zhang X, Cui H, Tan Y, Guo J, Zheng H, Liang D, Su T, Sun Y, Ge Y

pubmed logopapersMay 11 2025
ObjectiveThe purpose of this study is to perform multiple (<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>≥</mo><mn>3</mn></math>) material decomposition with deep learning method for spectral cone-beam CT (CBCT) imaging based on ultra-slow kV switching.ApproachIn this work, a novel deep neural network called SkV-Net is developed to reconstruct multiple material density images from the ultra-sparse spectral CBCT projections acquired using the ultra-slow kV switching technique. In particular, the SkV-Net has a backbone structure of U-Net, and a multi-head axial attention module is adopted to enlarge the perceptual field. It takes the CT images reconstructed from each kV as input, and output the basis material images automatically based on their energy-dependent attenuation characteristics. Numerical simulations and experimental studies are carried out to evaluate the performance of this new approach.Main ResultsIt is demonstrated that the SkV-Net is able to generate four different material density images, i.e., fat, muscle, bone and iodine, from five spans of kV switched spectral projections. Physical experiments show that the decomposition errors of iodine and CaCl<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mrow></mrow><mn>2</mn></msub></math> are less than 6<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>%</mi></math>, indicating high precision of this novel approach in distinguishing materials.SignificanceSkV-Net provides a promising multi-material decomposition approach for spectral CBCT imaging systems implemented with the ultra-slow kV switching scheme.

UltrasOM: A mamba-based network for 3D freehand ultrasound reconstruction using optical flow.

Sun R, Liu C, Wang W, Song Y, Sun T

pubmed logopapersMay 10 2025
Three-dimensional (3D) ultrasound (US) reconstruction is of significant value in clinical diagnosis, characterized by its safety, portability, low cost, and high real-time capabilities. 3D freehand ultrasound reconstruction aims to eliminate the need for tracking devices, relying solely on image data to infer the spatial relationships between frames. However, inherent jitter during handheld scanning introduces significant inaccuracies, making current methods ineffective in precisely predicting the spatial motions of ultrasound image frames. This leads to substantial cumulative errors over long sequence modeling, resulting in deformations or artifacts in the reconstructed volume. To address these challenges, we proposed UltrasOM, a 3D ultrasound reconstruction network designed for spatial relative motion estimation. Initially, we designed a video embedding module that integrates optical flow dynamics with original static information to enhance motion change features between frames. Next, we developed a Mamba-based spatiotemporal attention module, utilizing multi-layer stacked Space-Time Blocks to effectively capture global spatiotemporal correlations within video frame sequences. Finally, we incorporated correlation loss and motion speed loss to prevent overfitting related to scanning speed and pose, enhancing the model's generalization capability. Experimental results on a dataset of 200 forearm cases, comprising 58,011 frames, demonstrated that the proposed method achieved a final drift rate (FDR) of 10.24 %, a frame-to-frame distance error (DE) of 7.34 mm, a symmetric Hausdorff distance error (HD) of 10.81 mm, and a mean angular error (MEA) of 2.05°, outperforming state-of-the-art methods by 13.24 %, 15.11 %, 3.57 %, and 6.32 %, respectively. By integrating optical flow features and deeply exploring contextual spatiotemporal dependencies, the proposed network can directly predict the relative motions between multiple frames of ultrasound images without the need for tracking, surpassing the accuracy of existing methods.

Application of artificial intelligence-based three dimensional digital reconstruction technology in precision treatment of complex total hip arthroplasty.

Zheng Q, She H, Zhang Y, Zhao P, Liu X, Xiang B

pubmed logopapersMay 10 2025
To evaluate the predictive ability of AI HIP in determining the size and position of prostheses during complex total hip arthroplasty (THA). Additionally, it investigates the factors influencing the accuracy of preoperative planning predictions. From April 2021 to December 2023, patients with complex hip joint diseases were divided into the AI preoperative planning group (n = 29) and the X-ray preoperative planning group (n = 27). Postoperative X-rays were used to measure acetabular anteversion angle, abduction angle, tip-to-sternum distance, intraoperative duration, blood loss, planning time, postoperative Harris Hip Scores (at 2 weeks, 3 months, and 6 months), and visual analogue scale (VAS) pain scores (at 2 weeks and at final follow-up) to analyze clinical outcomes. On the acetabular side, the accuracy of AI preoperative planning was higher compared to X-ray preoperative planning (75.9% vs. 44.4%, P = 0.016). On the femoral side, AI preoperative planning also showed higher accuracy compared to X-ray preoperative planning (85.2% vs. 59.3%, P = 0.033). The AI preoperative planning group showed superior outcomes in terms of reducing bilateral leg length discrepancy (LLD), decreasing operative time and intraoperative blood loss, early postoperative recovery, and pain control compared to the X-ray preoperative planning group (P < 0.05). No significant differences were observed between the groups regarding bilateral femoral offset (FO) differences, bilateral combined offset (CO) differences, abduction angle, anteversion angle, or tip-to-sternum distance. Factors such as gender, age, affected side, comorbidities, body mass index (BMI) classification, bone mineral density did not affect the prediction accuracy of AI HIP preoperative planning. Artificial intelligence-based 3D planning can be effectively utilized for preoperative planning in complex THA. Compared to X-ray templating, AI demonstrates superior accuracy in prosthesis measurement and provides significant clinical benefits, particularly in early postoperative recovery.

Hybrid Learning: A Novel Combination of Self-Supervised and Supervised Learning for MRI Reconstruction without High-Quality Training Reference

Haoyang Pei, Ding Xia, Xiang Xu, William Moore, Yao Wang, Hersh Chandarana, Li Feng

arxiv logopreprintMay 9 2025
Purpose: Deep learning has demonstrated strong potential for MRI reconstruction, but conventional supervised learning methods require high-quality reference images, which are often unavailable in practice. Self-supervised learning offers an alternative, yet its performance degrades at high acceleration rates. To overcome these limitations, we propose hybrid learning, a novel two-stage training framework that combines self-supervised and supervised learning for robust image reconstruction. Methods: Hybrid learning is implemented in two sequential stages. In the first stage, self-supervised learning is employed to generate improved images from noisy or undersampled reference data. These enhanced images then serve as pseudo-ground truths for the second stage, which uses supervised learning to refine reconstruction performance and support higher acceleration rates. We evaluated hybrid learning in two representative applications: (1) accelerated 0.55T spiral-UTE lung MRI using noisy reference data, and (2) 3D T1 mapping of the brain without access to fully sampled ground truth. Results: For spiral-UTE lung MRI, hybrid learning consistently improved image quality over both self-supervised and conventional supervised methods across different acceleration rates, as measured by SSIM and NMSE. For 3D T1 mapping, hybrid learning achieved superior T1 quantification accuracy across a wide dynamic range, outperforming self-supervised learning in all tested conditions. Conclusions: Hybrid learning provides a practical and effective solution for training deep MRI reconstruction networks when only low-quality or incomplete reference data are available. It enables improved image quality and accurate quantitative mapping across different applications and field strengths, representing a promising technique toward broader clinical deployment of deep learning-based MRI.

Towards order of magnitude X-ray dose reduction in breast cancer imaging using phase contrast and deep denoising

Ashkan Pakzad, Robert Turnbull, Simon J. Mutch, Thomas A. Leatham, Darren Lockie, Jane Fox, Beena Kumar, Daniel Häsermann, Christopher J. Hall, Anton Maksimenko, Benedicta D. Arhatari, Yakov I. Nesterets, Amir Entezam, Seyedamir T. Taba, Patrick C. Brennan, Timur E. Gureyev, Harry M. Quiney

arxiv logopreprintMay 9 2025
Breast cancer is the most frequently diagnosed human cancer in the United States at present. Early detection is crucial for its successful treatment. X-ray mammography and digital breast tomosynthesis are currently the main methods for breast cancer screening. However, both have known limitations in terms of their sensitivity and specificity to breast cancers, while also frequently causing patient discomfort due to the requirement for breast compression. Breast computed tomography is a promising alternative, however, to obtain high-quality images, the X-ray dose needs to be sufficiently high. As the breast is highly radiosensitive, dose reduction is particularly important. Phase-contrast computed tomography (PCT) has been shown to produce higher-quality images at lower doses and has no need for breast compression. It is demonstrated in the present study that, when imaging full fresh mastectomy samples with PCT, deep learning-based image denoising can further reduce the radiation dose by a factor of 16 or more, without any loss of image quality. The image quality has been assessed both in terms of objective metrics, such as spatial resolution and contrast-to-noise ratio, as well as in an observer study by experienced medical imaging specialists and radiologists. This work was carried out in preparation for live patient PCT breast cancer imaging, initially at specialized synchrotron facilities.

Deep compressed multichannel adaptive optics scanning light ophthalmoscope.

Park J, Hagan K, DuBose TB, Maldonado RS, McNabb RP, Dubra A, Izatt JA, Farsiu S

pubmed logopapersMay 9 2025
Adaptive optics scanning light ophthalmoscopy (AOSLO) reveals individual retinal cells and their function, microvasculature, and micropathologies in vivo. As compared to the single-channel offset pinhole and two-channel split-detector nonconfocal AOSLO designs, by providing multidirectional imaging capabilities, a recent generation of multidetector and (multi-)offset aperture AOSLO modalities has been demonstrated to provide critical information about retinal microstructures. However, increasing detection channels requires expensive optical components and/or critically increases imaging time. To address this issue, we present an innovative combination of machine learning and optics as an integrated technology to compressively capture 12 nonconfocal channel AOSLO images simultaneously. Imaging of healthy participants and diseased subjects using the proposed deep compressed multichannel AOSLO showed enhanced visualization of rods, cones, and mural cells with over an order-of-magnitude improvement in imaging speed as compared to conventional offset aperture imaging. To facilitate the adaptation and integration with other in vivo microscopy systems, we made optical design, acquisition, and computational reconstruction codes open source.
Page 2 of 432 results
Show
per page
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.