Sort by:
Page 2 of 213 results

External validation and performance analysis of a deep learning-based model for the detection of intracranial hemorrhage.

Nada A, Sayed AA, Hamouda M, Tantawi M, Khan A, Alt A, Hassanein H, Sevim BC, Altes T, Gaballah A

pubmed logopapersJun 1 2025
PurposeWe aimed to investigate the external validation and performance of an FDA-approved deep learning model in labeling intracranial hemorrhage (ICH) cases on a real-world heterogeneous clinical dataset. Furthermore, we delved deeper into evaluating how patients' risk factors influenced the model's performance and gathered feedback on satisfaction from radiologists of varying ranks.MethodsThis prospective IRB approved study included 5600 non-contrast CT scans of the head in various clinical settings, that is, emergency, inpatient, and outpatient units. The patients' risk factors were collected and tested for impacting the performance of DL model utilizing univariate and multivariate regression analyses. The performance of DL model was contrasted to the radiologists' interpretation to determine the presence or absence of ICH with subsequent classification into subcategories of ICH. Key metrics, including accuracy, sensitivity, specificity, positive predictive value, and negative predictive value, were calculated. Receiver operating characteristics curve, along with the area under the curve, were determined. Additionally, a questionnaire was conducted with radiologists of varying ranks to assess their experience with the model.ResultsThe model exhibited outstanding performance, achieving a high sensitivity of 89% and specificity of 96%. Additional performance metrics, including positive predictive value (82%), negative predictive value (97%), and overall accuracy (94%), underscore its robust capabilities. The area under the ROC curve further demonstrated the model's efficacy, reaching 0.954. Multivariate logistic regression revealed statistical significance for age, sex, history of trauma, operative intervention, HTN, and smoking.ConclusionOur study highlights the satisfactory performance of the DL model on a diverse real-world dataset, garnering positive feedback from radiology trainees.

Artificial Intelligence in Vascular Neurology: Applications, Challenges, and a Review of AI Tools for Stroke Imaging, Clinical Decision Making, and Outcome Prediction Models.

Alqadi MM, Vidal SGM

pubmed logopapersMay 9 2025
Artificial intelligence (AI) promises to compress stroke treatment timelines, yet its clinical return on investment remains uncertain. We interrogate state‑of‑the‑art AI platforms across imaging, workflow orchestration, and outcome prediction to clarify value drivers and execution risks. Convolutional, recurrent, and transformer architectures now trigger large‑vessel‑occlusion alerts, delineate ischemic core in seconds, and forecast 90‑day function. Commercial deployments-RapidAI, Viz.ai, Aidoc-report double‑digit reductions in door‑to‑needle metrics and expanded thrombectomy eligibility. However, dataset bias, opaque reasoning, and limited external validation constrain scalability. Hybrid image‑plus‑clinical models elevate predictive accuracy but intensify data‑governance demands. AI can operationalize precision stroke care, but enterprise‑grade adoption requires federated data pipelines, explainable‑AI dashboards, and fit‑for‑purpose regulation. Prospective multicenter trials and continuous lifecycle surveillance are mandatory to convert algorithmic promise into reproducible, equitable patient benefit.

Automated Emergent Large Vessel Occlusion Detection Using Viz.ai Software and Its Impact on Stroke Workflow Metrics and Patient Outcomes in Stroke Centers: A Systematic Review and Meta-analysis.

Sarhan K, Azzam AY, Moawad MHED, Serag I, Abbas A, Sarhan AE

pubmed logopapersMay 8 2025
The implementation of artificial intelligence (AI), particularly Viz.ai software in stroke care, has emerged as a promising tool to enhance the detection of large vessel occlusion (LVO) and to improve stroke workflow metrics and patient outcomes. The aim of this systematic review and meta-analysis is to evaluate the impact of Viz.ai on stroke workflow efficiency in hospitals and on patients' outcomes. Following the PRISMA guidelines, we conducted a comprehensive search on electronic databases, including PubMed, Web of Science, and Scopus databases, to obtain relevant studies until 25 October 2024. Our primary outcomes were door-to-groin puncture (DTG) time, CT scan-to-start of endovascular treatment (EVT) time, CT scan-to-recanalization time, and door-in-door-out time. Secondary outcomes included symptomatic intracranial hemorrhage (ICH), any ICH, mortality, mRS score < 2 at 90 days, and length of hospital stay. A total of 12 studies involving 15,595 patients were included in our analysis. The pooled analysis demonstrated that the implementation of the Viz.ai algorithm was associated with lesser CT scan to EVT time (SMD -0.71, 95% CI [-0.98, -0.44], p < 0.001) and DTG time (SMD -0.50, 95% CI [-0.66, -0.35], p < 0.001) as well as CT to recanalization time (SMD -0.55, 95% CI [-0.76, -0.33], p < 0.001). Additionally, patients in the post-AI group had significantly lower door-in door-out time than the pre-AI group (SMD -0.49, 95% CI [-0.71, -0.28], p < 0.001). Despite the workflow metrics improvement, our analysis did not reveal statistically significant differences in patient clinical outcomes (p > 0.05). Our results suggest that the integration of the Viz.ai platform in stroke care holds significant potential for reducing EVT delays in patients with LVO and optimizing stroke flow metrics in comprehensive stroke centers. Further studies are required to validate its efficacy in improving clinical outcomes in patients with LVO.
Page 2 of 213 results
Show
per page
«12

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.