Sort by:
Page 2 of 766 results

Carotid and femoral bifurcation plaques detected by ultrasound as predictors of cardiovascular events.

Blinc A, Nicolaides AN, Poredoš P, Paraskevas KI, Heiss C, Müller O, Rammos C, Stanek A, Jug B

pubmed logopapersJul 25 2025
<b></b>Risk factor-based algorithms give a good estimate of cardiovascular (CV) risk at the population level but are often inaccurate at the individual level. Detecting preclinical atherosclerotic plaques in the carotid and common femoral arterial bifurcations by ultrasound is a simple, non-invasive way of detecting atherosclerosis in the individual and thus more accurately estimating his/her risk of future CV events. The presence of plaques in these bifurcations is independently associated with increased risk of CV death and myocardial infarction, even after adjusting for traditional risk factors, while ultrasonographic characteristics of vulnerable plaque are mostly associated with increased risk for ipsilateral ischaemic stroke. The predictive value of carotid and femoral plaques for CV events increases in proportion to plaque burden and especially by plaque progression over time. Assessing the burden of carotid and/or common femoral bifurcation plaques enables reclassification of a significant number of individuals with low risk according risk factor-based algorithms into intermediate or high CV risk and intermediate risk individuals into the low- or high CV risk. Ongoing multimodality imaging studies, supplemented by clinical and genetic data, aided by machine learning/ artificial intelligence analysis are expected to advance our understanding of atherosclerosis progression from the asymptomatic into the symptomatic phase and personalize prevention.

SUP-Net: Slow-time Upsampling Network for Aliasing Removal in Doppler Ultrasound.

Nahas H, Yu ACH

pubmed logopapersJul 24 2025
Doppler ultrasound modalities, which include spectral Doppler and color flow imaging, are frequently used tools for flow diagnostics because of their real-time point-of-care applicability and high temporal resolution. When implemented using pulse-echo sensing and phase shift estimation principles, this modality's pulse repetition frequency (PRF) is known to influence the maximum detectable velocity. If the PRF is inevitably set below the Nyquist limit due to imaging requirements or hardware constraints, aliasing errors or spectral overlap may corrupt the estimated flow data. To solve this issue, we have devised a deep learning-based framework, powered by a custom slow-time upsampling network (SUP-Net) that leverages spatiotemporal characteristics to upsample the received ultrasound signals across pulse echoes acquired using high-frame-rate ultrasound (HiFRUS). Our framework infers high-PRF signals from signals acquired at low PRF, thereby improving Doppler ultrasound's flow estimation quality. SUP-Net was trained and evaluated on in vivo femoral acquisitions from 20 participants and was applied recursively to resolve scenarios with excessive aliasing across a range of PRFs. We report the successful reconstruction of slow-time signals with frequency content that exceeds the Nyquist limit once and twice. By operating on the fundamental slow-time signals, our framework can resolve aliasing-related artifacts in several downstream modalities, including color Doppler and pulse wave Doppler.

CAP-Net: Carotid Artery Plaque Segmentation System Based on Computed Tomography Angiography.

Luo X, Hu B, Zhou S, Wu Q, Geng C, Zhao L, Li Y, Di R, Pu J, Geng D, Yang L

pubmed logopapersJul 23 2025
Diagnosis of carotid plaques from head and neck CT angiography (CTA) scans is typically time-consuming and labor-intensive, leading to limited studies and unpleasant results in this area. The objective of this study is to develop a deep-learning-based model for detection and segmentation of carotid plaques using CTA images. CTA images from 1061 patients (765 male; 296 female) with 4048 carotid plaques were included and split into a 75% training-validation set and a 25% independent test set. We built a workflow involving three modified deep learning networks: a plain U-Net for coarse artery segmentation, an Attention U-Net for fine artery segmentation, a dual-channel-input ConvNeXt-based U-Net architecture for plaque segmentation, and post-processing to refine predictions and eliminate false positives. The models were trained on the training-validation set using five-fold cross-validation and further evaluated on the independent test set using comprehensive metrics for segmentation and plaque detection. The proposed workflow was evaluated in the independent test set (261 patients with 902 carotid plaques) and achieved a mean dice similarity coefficient (DSC) of 0.91±0.04 in artery segmentation, and 0.75±0.14/0.67±0.15 in plaque segmentation per artery/patient. The model detected 95.5% (861/902) plaques, including 96.6% (423/438), 95.3% (307/322), and 92.3% (131/142) of calcified, mixed, and soft plaques, with less than one (0.63±0.93) false positive plaque per patient on average. This study developed an automatic detection and segmentation deep learning-based CAP-Net for carotid plaques using CTA, which yielded promising results in identifying and delineating plaques.

Robust Noisy Pseudo-label Learning for Semi-supervised Medical Image Segmentation Using Diffusion Model

Lin Xi, Yingliang Ma, Cheng Wang, Sandra Howell, Aldo Rinaldi, Kawal S. Rhode

arxiv logopreprintJul 22 2025
Obtaining pixel-level annotations in the medical domain is both expensive and time-consuming, often requiring close collaboration between clinical experts and developers. Semi-supervised medical image segmentation aims to leverage limited annotated data alongside abundant unlabeled data to achieve accurate segmentation. However, existing semi-supervised methods often struggle to structure semantic distributions in the latent space due to noise introduced by pseudo-labels. In this paper, we propose a novel diffusion-based framework for semi-supervised medical image segmentation. Our method introduces a constraint into the latent structure of semantic labels during the denoising diffusion process by enforcing prototype-based contrastive consistency. Rather than explicitly delineating semantic boundaries, the model leverages class prototypes centralized semantic representations in the latent space as anchors. This strategy improves the robustness of dense predictions, particularly in the presence of noisy pseudo-labels. We also introduce a new publicly available benchmark: Multi-Object Segmentation in X-ray Angiography Videos (MOSXAV), which provides detailed, manually annotated segmentation ground truth for multiple anatomical structures in X-ray angiography videos. Extensive experiments on the EndoScapes2023 and MOSXAV datasets demonstrate that our method outperforms state-of-the-art medical image segmentation approaches under the semi-supervised learning setting. This work presents a robust and data-efficient diffusion model that offers enhanced flexibility and strong potential for a wide range of clinical applications.

Deep learning reconstruction enhances image quality in contrast-enhanced CT venography for deep vein thrombosis.

Asari Y, Yasaka K, Kurashima J, Katayama A, Kurokawa M, Abe O

pubmed logopapersJul 18 2025
This study aimed to evaluate and compare the diagnostic performance and image quality of deep learning reconstruction (DLR) with hybrid iterative reconstruction (Hybrid IR) and filtered back projection (FBP) in contrast-enhanced CT venography for deep vein thrombosis (DVT). A retrospective analysis was conducted on 51 patients who underwent lower limb CT venography, including 20 with DVT lesions and 31 without DVT lesions. CT images were reconstructed using DLR, Hybrid IR, and FBP. Quantitative image quality metrics, such as contrast-to-noise ratio (CNR) and image noise, were measured. Three radiologists independently assessed DVT lesion detection, depiction of DVT lesions and normal structures, subjective image noise, artifacts, and overall image quality using scoring systems. Diagnostic performance was evaluated using sensitivity and area under the receiver operating characteristic curve (AUC). The paired t-test and Wilcoxon signed-rank test compared the results for continuous variables and ordinal scales, respectively, between DLR and Hybrid IR as well as between DLR and FBP. DLR significantly improved CNR and reduced image noise compared to Hybrid IR and FBP (p < 0.001). AUC and sensitivity for DVT detection were not statistically different across reconstruction methods. Two readers reported improved lesion visualization with DLR. DLR was also rated superior in image quality, normal structure depiction, and noise suppression by all readers (p < 0.001). DLR enhances image quality and anatomical clarity in CT venography. These findings support the utility of DLR in improving diagnostic confidence and image interpretability in DVT assessment.

Early Vascular Aging Determined by 3-Dimensional Aortic Geometry: Genetic Determinants and Clinical Consequences.

Beeche C, Zhao B, Tavolinejad H, Pourmussa B, Kim J, Duda J, Gee J, Witschey WR, Chirinos JA

pubmed logopapersJul 17 2025
Vascular aging is an important phenotype characterized by structural and geometric remodeling. Some individuals exhibit supernormal vascular aging, associated with improved cardiovascular outcomes; others experience early vascular aging, linked to adverse cardiovascular outcomes. The aorta is the artery that exhibits the most prominent age-related changes; however, the biological mechanisms underlying aortic aging, its genetic architecture, and its relationship with cardiovascular structure, function, and disease states remain poorly understood. We developed sex-specific models to quantify aortic age on the basis of aortic geometric phenotypes derived from 3-dimensional tomographic imaging data in 2 large biobanks: the UK Biobank and the Penn Medicine BioBank. Convolutional neural ne2rk-assisted 3-dimensional segmentation of the aorta was performed in 56 104 magnetic resonance imaging scans in the UK Biobank and 6757 computed tomography scans in the Penn Medicine BioBank. Aortic vascular age index (AVAI) was calculated as the difference between the vascular age predicted from geometric phenotypes and the chronological age, expressed as a percent of chronological age. We assessed associations with cardiovascular structure and function using multivariate linear regression and examined the genetic architecture of AVAI through genome-wide association studies, followed by Mendelian randomization to assess causal associations. We also constructed a polygenic risk score for AVAI. AVAI displayed numerous associations with cardiac structure and function, including increased left ventricular mass (standardized β=0.144 [95% CI, 0.138, 0.149]; <i>P</i><0.0001), wall thickness (standardized β=0.061 [95% CI, 0.054, 0.068]; <i>P</i><0.0001), and left atrial volume maximum (standardized β=0.060 [95% CI, 0.050, 0.069]; <i>P</i><0.0001). AVAI exhibited high genetic heritability (<i>h</i><sup>2</sup>=40.24%). We identified 54 independent genetic loci (<i>P</i><5×10<sup>-</sup><sup>8</sup>) associated with AVAI, which further exhibited gene-level associations with the fibrillin-1 (<i>FBN1</i>) and elastin (<i>ELN1</i>) genes. Mendelian randomization supported causal associations between AVAI and atrial fibrillation, vascular dementia, aortic aneurysm, and aortic dissection. A polygenic risk score for AVAI was associated with an increased prevalence of atrial fibrillation, hypertension, aortic aneurysm, and aortic dissection. Early aortic aging is significantly associated with adverse cardiac remodeling and important cardiovascular disease states. AVAI exhibits a polygenic, highly heritable genetic architecture. Mendelian randomization analyses support a causal association between AVAI and cardiovascular diseases, including atrial fibrillation, vascular dementia, aortic aneurysms, and aortic dissection.

Imaging analysis using Artificial Intelligence to predict outcomes after endovascular aortic aneurysm repair: protocol for a retrospective cohort study.

Lareyre F, Raffort J, Kakkos SK, D'Oria M, Nasr B, Saratzis A, Antoniou GA, Hinchliffe RJ

pubmed logopapersJul 16 2025
Endovascular aortic aneurysm repair (EVAR) requires long-term surveillance to detect and treat postoperative complications. However, prediction models to optimise follow-up strategies are still lacking. The primary objective of this study is to develop predictive models of post-operative outcomes following elective EVAR using Artificial Intelligence (AI)-driven analysis. The secondary objective is to investigate morphological aortic changes following EVAR. This international, multicentre, observational study will retrospectively include 500 patients who underwent elective EVAR. Primary outcomes are EVAR postoperative complications including deaths, re-interventions, endoleaks, limb occlusion and stent-graft migration occurring within 1 year and at mid-term follow-up (1 to 3 years). Secondary outcomes are aortic anatomical changes. Morphological changes following EVAR will be analysed and compared based on preoperative and postoperative CT angiography (CTA) images (within 1 to 12 months, and at the last follow-up) using the AI-based software PRAEVAorta 2 (Nurea). Deep learning algorithms will be applied to stratify the risk of postoperative outcomes into low or high-risk categories. The training and testing dataset will be respectively composed of 70% and 30% of the cohort. The study protocol is designed to ensure that the sponsor and the investigators comply with the principles of the Declaration of Helsinki and the ICH E6 good clinical practice guideline. The study has been approved by the ethics committee of the University Hospital of Patras (Patras, Greece) under the number 492/05.12.2024. The results of the study will be presented at relevant national and international conferences and submitted for publication to peer-review journals.

SML-Net: Semi-supervised multi-task learning network for carotid plaque segmentation and classification.

Gan H, Liu L, Wang F, Yang Z, Huang Z, Zhou R

pubmed logopapersJul 16 2025
Carotid ultrasound image segmentation and classification are crucial in assessing the severity of carotid plaques which serve as a major cause of ischemic stroke. Although many methods are employed for carotid plaque segmentation and classification, treating these tasks separately neglects their interrelatedness. Currently, there is limited research exploring the key information of both plaque and background regions, and collecting and annotating extensive segmentation data is a costly and time-intensive task. To address these two issues, we propose an end-to-end semi-supervised multi-task learning network(SML-Net), which can classify plaques while performing segmentation. SML-Net identifies regions by extracting image features and fuses multi-scale features to improve semi-supervised segmentation. SML-Net effectively utilizes plaque and background regions from the segmentation results and extracts features from various dimensions, thereby facilitating the classification task. Our experimental results indicate that SML-Net achieves a plaque classification accuracy of 86.59% and a Dice Similarity Coefficient (DSC) of 82.36%. Compared to the leading single-task network, SML-Net improves DSC by 1.2% and accuracy by 1.84%. Similarly, when compared to the best-performing multi-task network, our method achieves a 1.05% increase in DSC and a 2.15% improvement in classification accuracy.

Depth-Sequence Transformer (DST) for Segment-Specific ICA Calcification Mapping on Non-Contrast CT

Xiangjian Hou, Ebru Yaman Akcicek, Xin Wang, Kazem Hashemizadeh, Scott Mcnally, Chun Yuan, Xiaodong Ma

arxiv logopreprintJul 10 2025
While total intracranial carotid artery calcification (ICAC) volume is an established stroke biomarker, growing evidence shows this aggregate metric ignores the critical influence of plaque location, since calcification in different segments carries distinct prognostic and procedural risks. However, a finer-grained, segment-specific quantification has remained technically infeasible. Conventional 3D models are forced to process downsampled volumes or isolated patches, sacrificing the global context required to resolve anatomical ambiguity and render reliable landmark localization. To overcome this, we reformulate the 3D challenge as a \textbf{Parallel Probabilistic Landmark Localization} task along the 1D axial dimension. We propose the \textbf{Depth-Sequence Transformer (DST)}, a framework that processes full-resolution CT volumes as sequences of 2D slices, learning to predict $N=6$ independent probability distributions that pinpoint key anatomical landmarks. Our DST framework demonstrates exceptional accuracy and robustness. Evaluated on a 100-patient clinical cohort with rigorous 5-fold cross-validation, it achieves a Mean Absolute Error (MAE) of \textbf{0.1 slices}, with \textbf{96\%} of predictions falling within a $\pm1$ slice tolerance. Furthermore, to validate its architectural power, the DST backbone establishes the best result on the public Clean-CC-CCII classification benchmark under an end-to-end evaluation protocol. Our work delivers the first practical tool for automated segment-specific ICAC analysis. The proposed framework provides a foundation for further studies on the role of location-specific biomarkers in diagnosis, prognosis, and procedural planning. Our code will be made publicly available.

Semi-supervised learning and integration of multi-sequence MR-images for carotid vessel wall and plaque segmentation

Marie-Christine Pali, Christina Schwaiger, Malik Galijasevic, Valentin K. Ladenhauf, Stephanie Mangesius, Elke R. Gizewski

arxiv logopreprintJul 10 2025
The analysis of carotid arteries, particularly plaques, in multi-sequence Magnetic Resonance Imaging (MRI) data is crucial for assessing the risk of atherosclerosis and ischemic stroke. In order to evaluate metrics and radiomic features, quantifying the state of atherosclerosis, accurate segmentation is important. However, the complex morphology of plaques and the scarcity of labeled data poses significant challenges. In this work, we address these problems and propose a semi-supervised deep learning-based approach designed to effectively integrate multi-sequence MRI data for the segmentation of carotid artery vessel wall and plaque. The proposed algorithm consists of two networks: a coarse localization model identifies the region of interest guided by some prior knowledge on the position and number of carotid arteries, followed by a fine segmentation model for precise delineation of vessel walls and plaques. To effectively integrate complementary information across different MRI sequences, we investigate different fusion strategies and introduce a multi-level multi-sequence version of U-Net architecture. To address the challenges of limited labeled data and the complexity of carotid artery MRI, we propose a semi-supervised approach that enforces consistency under various input transformations. Our approach is evaluated on 52 patients with arteriosclerosis, each with five MRI sequences. Comprehensive experiments demonstrate the effectiveness of our approach and emphasize the role of fusion point selection in U-Net-based architectures. To validate the accuracy of our results, we also include an expert-based assessment of model performance. Our findings highlight the potential of fusion strategies and semi-supervised learning for improving carotid artery segmentation in data-limited MRI applications.
Page 2 of 766 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.