Sort by:
Page 2 of 14132 results

BrainSignsNET: A Deep Learning Model for 3D Anatomical Landmark Detection in the Human Brain Imaging

shirzadeh barough, s., Ventura, C., Bilgel, M., Albert, M., Miller, M. I., Moghekar, A.

medrxiv logopreprintAug 5 2025
Accurate detection of anatomical landmarks in brain Magnetic Resonance Imaging (MRI) scans is essential for reliable spatial normalization, image alignment, and quantitative neuroimaging analyses. In this study, we introduce BrainSignsNET, a deep learning framework designed for robust three-dimensional (3D) landmark detection. Our approach leverages a multi-task 3D convolutional neural network that integrates an attention decoder branch with a multi-class decoder branch to generate precise 3D heatmaps, from which landmark coordinates are extracted. The model was trained and internally validated on T1-weighted Magnetization-Prepared Rapid Gradient-Echo (MPRAGE) scans from the Alzheimers Disease Neuroimaging Initiative (ADNI), the Baltimore Longitudinal Study of Aging (BLSA), and the Biomarkers of Cognitive Decline in Adults at Risk for AD (BIOCARD) datasets and externally validated on a clinical dataset from the Johns Hopkins Hydrocephalus Clinic. The study encompassed 14,472 scans from 6,299 participants, representing a diverse demographic profile with a significant proportion of older adult participants, particularly those over 70 years of age. Extensive preprocessing and data augmentation strategies, including traditional MRI corrections and tailored 3D transformations, ensured data consistency and improved model generalizability. Performance metrics demonstrated that on internal validation BrainSignsNET achieved an overall mean Euclidean distance of 2.32 {+/-} 0.41 mm and 94.8% of landmarks localized within their anatomically defined 3D volumes in the external validation dataset. This improvement in accurate anatomical landmark detection on brain MRI scans should benefit many imaging tasks, including registration, alignment, and quantitative analyses.

Delineating retinal breaks in ultra-widefield fundus images with a PraNet-based machine learning model

Takayama, T., Uto, T., Tsuge, T., Kondo, Y., Tampo, H., Chiba, M., Kaburaki, T., Yanagi, Y., Takahashi, H.

medrxiv logopreprintAug 5 2025
BackgroundRetinal breaks are critical lesions that can lead to retinal detachment and vision loss if not detected and treated early. Automated and precise delineation of retinal breaks using ultra- widefield fundus (UWF) images remain a significant challenge in ophthalmology. ObjectiveThis study aimed to develop and validate a deep learning model based on the PraNet architecture for the accurate delineation of retinal breaks in UWF images, with a particular focus on segmentation performance in retinal break-positive cases. MethodsWe developed a deep learning segmentation model based on the PraNet architecture. This study utilized a dataset consisting of 8,083 cases and a total of 34,867 UWF images. Of these, 960 images contained retinal breaks, while the remaining 33,907 images did not. The dataset was split into 34,713 images for training, 81 for validation, and 73 for testing. The model was trained and validated on this dataset. Model performance was evaluated using both image-wise segmentation metrics (accuracy, precision, recall, Intersection over Union (IoU), dice score, centroid distance score) and lesion-wise detection metrics (sensitivity, positive predictive value). ResultsThe PraNet-based model achieved an accuracy of 0.996, a precision of 0.635, a recall of 0.756, an IoU of 0.539, a dice score of 0.652, and a centroid distance score of 0.081 for pixel-level detection of retinal breaks. The lesion-wise sensitivity was calculated as 0.885, and the positive predictive value (PPV) was 0.742. ConclusionsTo our knowledge, this is the first study to present pixel-level localization of retinal breaks using deep learning on UWF images. Our findings demonstrate that the PraNet-based model provides precise and robust pixel-level segmentation of retinal breaks in UWF images. This approach offers a clinically applicable tool for the precise delineation of retinal breaks, with the potential to improve patient outcomes. Future work should focus on external validation across multiple institutions and integration of additional annotation strategies to further enhance model performance and generalizability.

Deep Learning in Myocarditis: A Novel Approach to Severity Assessment

Nishimori, M., Otani, T., Asaumi, Y., Ohta-Ogo, K., Ikeda, Y., Amemiya, K., Noguchi, T., Izumi, C., Shinohara, M., Hatakeyama, K., Nishimura, K.

medrxiv logopreprintAug 2 2025
BackgroundMyocarditis is a life-threatening disease with significant hemodynamic risks during the acute phase. Although histopathological examination of myocardial biopsy specimens remains the gold standard for diagnosis, there is no established method for objectively quantifying cardiomyocyte damage. We aimed to develop an AI model to evaluate clinical myocarditis severity using comprehensive pathology data. MethodsWe retrospectively analyzed 314 patients (1076 samples) who underwent myocardial biopsy from 2002 to 2021 at the National Cerebrovascular Center. Among these patients, 158 were diagnosed with myocarditis based on the Dallas criteria. A Multiple Instance Learning (MIL) model served as a pre-trained classifier to detect myocarditis across whole-slide images. We then constructed two clinical severity-prediction models: (1) a logistic regression model (Model 1) using the density of inflammatory cells per unit area, and (2) a Transformer-based model (Model 2), which processed the top-ranked patches identified by the MIL model to predict clinical severe outcomes. ResultsModel 1 achieved an AUROC of 0.809, indicating a robust association between inflammatory cell density and severe myocarditis. In contrast, Model 2, the Transformer-based approach, yielded an AUROC of 0.993 and demonstrated higher accuracy and precision for severity prediction. Attention score visualizations showed that Model 2 captured both inflammatory cell infiltration and additional morphological features. These findings suggest that combining MIL with Transformer architectures enables more comprehensive identification of key histological markers associated with clinical severe disease. ConclusionsOur results highlight that a Transformer-based AI model analyzing whole-slide pathology images can accurately assess clinical myocarditis severity. Moreover, simply quantifying the extent of inflammatory cell infiltration also correlates strongly with clinical outcomes. These methods offer a promising avenue for improving diagnostic precision, guiding treatment decisions, and ultimately enhancing patient management. Future prospective studies are warranted to validate these models in broader clinical settings and facilitate their integration into routine pathological workflows. What is new?- This is the first study to apply an AI model for the diagnosis and severity assessment of myocarditis. - New evidence shows that inflammatory cell infiltration is related to the severity of myocarditis. - Using information from the entire tissue, not just inflammatory cells, allows for a more accurate assessment of myocarditis severity. What are the clinical implications?- The use of the AI model allows for an unprecedented histological evaluation of myocarditis severity, which can enhance early diagnosis and intervention strategies. - Rapid and precise assessments of myocarditis severity by the AI model can support clinicians in making timely and appropriate treatment decisions, potentially improving patient outcomes. - The incorporation of this AI model into clinical practice may streamline diagnostic workflows and optimize the allocation of medical resources, enhancing overall patient care.

Automated Assessment of Choroidal Mass Dimensions Using Static and Dynamic Ultrasonographic Imaging

Emmert, N., Wall, G., Nabavi, A., Rahdar, A., Wilson, M., King, B., Cernichiaro-Espinosa, L., Yousefi, S.

medrxiv logopreprintAug 1 2025
PurposeTo develop and validate an artificial intelligence (AI)-based model that automatically measures choroidal mass dimensions on B{square}scan ophthalmic ultrasound still images and cine loops. DesignRetrospective diagnostic accuracy study with internal and external validation. ParticipantsThe dataset included 1,822 still images and 283 cine loops of choroidal masses for model development and testing. An additional 182 still images were used for external validation, and 302 control images with other diagnoses were included to assess specificity MethodsA deep convolutional neural network (CNN) based on the U-Net architecture was developed to automatically measure the apical height and basal diameter of choroidal masses on B-scan ultrasound. All still images were manually annotated by expert graders and reviewed by a senior ocular oncologist. Cine loops were analyzed frame by frame and the frame with the largest detected mass dimensions was selected for evaluation. Outcome MeasuresThe primary outcome was the models measurement accuracy, defined by the mean absolute error (MAE) in millimeters, compared to expert manual annotations, for both apical height and basal diameter. Secondary metrics included the Dice coefficient, coefficient of determination (R2), and mean pixel distance between predicted and reference measurements. ResultsOn the internal test set of still images, the model successfully detected the tumor in 99.7% of cases. The mean absolute error (MAE) was 0.38 {+/-} 0.55 mm for apical height (95.1% of measurements <1 mm of the expert annotation) and was 0.99 {+/-} 1.15 mm for basal diameter (64.4% of measurements <1 mm). Linear agreement between predicted and reference measurements was strong, with R2 values of 0.74 for apical height and 0.89 for basal diameter. When applied to the control set of 302 control images, the model demonstrated a moderate false positive rate. On the external validation set, the model maintained comparable accuracy. Among the cine loops, the model detected tumors in 89.4% of cases with comparable accuracy. ConclusionDeep learning can deliver fast, reproducible, millimeter{square}level measurements of choroidal mass dimensions with robust performance across different mass types and imaging sources. These findings support the potential clinical utility of AI-assisted measurement tools in ocular oncology workflows.

Interpreting convolutional neural network explainability for head-and-neck cancer radiotherapy organ-at-risk segmentation

Strijbis, V. I. J., Gurney-Champion, O. J., Grama, D. I., Slotman, B. J., Verbakel, W. F. A. R.

medrxiv logopreprintJul 31 2025
BackgroundConvolutional neural networks (CNNs) have emerged to reduce clinical resources and standardize auto-contouring of organs-at-risk (OARs). Although CNNs perform adequately for most patients, understanding when the CNN might fail is critical for effective and safe clinical deployment. However, the limitations of CNNs are poorly understood because of their black-box nature. Explainable artificial intelligence (XAI) can expose CNNs inner mechanisms for classification. Here, we investigate the inner mechanisms of CNNs for segmentation and explore a novel, computational approach to a-priori flag potentially insufficient parotid gland (PG) contours. MethodsFirst, 3D UNets were trained in three PG segmentation situations using (1) synthetic cases; (2) 1925 clinical computed tomography (CT) scans with typical and (3) more consistent contours curated through a previously validated auto-curation step. Then, we generated attribution maps for seven XAI methods, and qualitatively assessed them for congruency between simulated and clinical contours, and how much XAI agreed with expert reasoning. To objectify observations, we explored persistent homology intensity filtrations to capture essential topological characteristics of XAI attributions. Principal component (PC) eigenvalues of Euler characteristic profiles were correlated with spatial agreement (Dice-Sorensen similarity coefficient; DSC). Evaluation was done using sensitivity, specificity and the area under receiver operating characteristic (AUROC) curve on an external AAPM dataset, where as proof-of-principle, we regard the lowest 15% DSC as insufficient. ResultsPatternNet attributions (PNet-A) focused on soft-tissue structures, whereas guided backpropagation (GBP) highlighted both soft-tissue and high-density structures (e.g. mandible bone), which was congruent with synthetic situations. Both methods typically had higher/denser activations in better auto-contoured medial and anterior lobes. Curated models produced "cleaner" gradient class-activation mapping (GCAM) attributions. Quantitative analysis showed that PC{lambda}1 of guided GCAMs (GGCAM) Euler characteristic (EC) profile had good predictive value (sensitivity>0.85, specificity>0.9) of DSC for AAPM cases, with AUROC=0.66, 0.74, 0.94, 0.83 for GBP, GCAM, GGCAM and PNet-A. For for {lambda}1<-1.8e3 of GGCAMs EC-profile, 87% of cases were insufficient. ConclusionsGBP and PNet-A qualitatively agreed most with expert reasoning on directly (structure borders) and indirectly (proxies used for identifying structure borders) important features for PG segmentation. Additionally, this work investigated as proof-of-principle how topological data analysis could possibly be used for quantitative XAI signal analysis to a-priori mark potentially inadequate CNN-segmentations, using only features from inside the predicted PG. This work used PG as a well-understood segmentation paradigm and may extend to target volumes and other organs-at-risk.

segcsvdPVS: A convolutional neural network-based tool for quantification of enlarged perivascular spaces (PVS) on T1-weighted images

Gibson, E., Ramirez, J., Woods, L. A., Berberian, S., Ottoy, J., Scott, C., Yhap, V., Gao, F., Coello, r. D., Valdes-Hernandez, m., Lange, A., Tartaglia, C., Kumar, S., Binns, M. A., Bartha, R., Symons, S., Swartz, R. H., Masellis, M., Singh, N., MacIntosh, B. J., Wardlaw, J. M., Black, S. E., Lim, A. S., Goubran, M.

medrxiv logopreprintJul 29 2025
IntroductionEnlarged perivascular spaces (PVS) are imaging markers of cerebral small vessel disease (CSVD) that are associated with age, disease phenotypes, and overall health. Quantification of PVS is challenging but necessary to expand an understanding of their role in cerebrovascular pathology. Accurate and automated segmentation of PVS on T1-weighted images would be valuable given the widespread use of T1-weighted imaging protocols in multisite clinical and research datasets. MethodsWe introduce segcsvdPVS, a convolutional neural network (CNN)-based tool for automated PVS segmentation on T1-weighted images. segcsvdPVS was developed using a novel hierarchical approach that builds on existing tools and incorporates robust training strategies to enhance the accuracy and consistency of PVS segmentation. Performance was evaluated using a comprehensive evaluation strategy that included comparison to existing benchmark methods, ablation-based validation, accuracy validation against manual ground truth annotations, correlation with age-related PVS burden as a biological benchmark, and extensive robustness testing. ResultssegcsvdPVS achieved strong object-level performance for basal ganglia PVS (DSC = 0.78), exhibiting both high sensitivity (SNS = 0.80) and precision (PRC = 0.78). Although voxel-level precision was lower (PRC = 0.57), manual correction improved this by only ~3%, indicating that the additional voxels reflected primary boundary- or extent-related differences rather than correctable false positive error. For non-basal ganglia PVS, segcsvdPVS outperformed benchmark methods, exhibiting higher voxel-level performance across several metrics (DSC = 0.60, SNS = 0.67, PRC = 0.57, NSD = 0.77), despite overall lower performance relative to basal ganglia PVS. Additionally, the association between age and segmentation-derived measures of PVS burden were consistently stronger and more reliable for segcsvdPVS compared to benchmark methods across three cohorts (test6, ADNI, CAHHM), providing further evidence of the accuracy and consistency of its segmentation output. ConclusionssegcsvdPVS demonstrates robust performance across diverse imaging conditions and improved sensitivity to biologically meaningful associations, supporting its utility as a T1-based PVS segmentation tool.

Deep learning aging marker from retinal images unveils sex-specific clinical and genetic signatures

Trofimova, O., Böttger, L., Bors, S., Pan, Y., Liefers, B., Beyeler, M. J., Presby, D. M., Bontempi, D., Hastings, J., Klaver, C. C. W., Bergmann, S.

medrxiv logopreprintJul 29 2025
Retinal fundus images offer a non-invasive window into systemic aging. Here, we fine-tuned a foundation model (RETFound) to predict chronological age from color fundus images in 71,343 participants from the UK Biobank, achieving a mean absolute error of 2.85 years. The resulting retinal age gap (RAG), i.e., the difference between predicted and chronological age, was associated with cardiometabolic traits, inflammation, cognitive performance, mortality, dementia, cancer, and incident cardiovascular disease. Genome-wide analyses identified genes related to longevity, metabolism, neurodegeneration, and age-related eye diseases. Sex-stratified models revealed consistent performance but divergent biological signatures: males had younger-appearing retinas and stronger links to metabolic syndrome, while in females, both model attention and genetic associations pointed to a greater involvement of retinal vasculature. Our study positions retinal aging as a biologically meaningful and sex-sensitive biomarker that can support more personalized approaches to risk assessment and aging-related healthcare.

Brain White Matter Microstructure Associations with Blood Markers of the GSH Redox cycle in Schizophrenia

Pavan, T., Steullet, P., Aleman-Gomez, Y., Jenni, R., Schilliger, Z., Cleusix, M., Alameda, L., Do, K. Q., Conus, P., Hagmann, P., Dwir, D., Klauser, P., Jelescu, I.

medrxiv logopreprintJul 28 2025
In groups of patients suffering from schizophrenia (SZ), redox dysregulation was reported in both peripheral fluids and brain. It has been hypothesized that such dysregulation, including alterations of the glutathione (GSH) cycle could participate in the brain white matter (WM) abnormalities in SZ due to the oligodendrocytes susceptibility to oxidative stress. In this study we aim to assess the differences between 82 schizophrenia patients (PT) and 86 healthy controls (HC) in GSH-redox peripheral blood markers: GSH peroxidase (GPx), reductase (GR) enzymatic activities and their ratio (GPx/GR-ratio), evaluating the hypotheses that alterations in the homeostasis of the systemic GSH cycle may be associated with pathological mechanisms in the brain WM in PT. To do so, we employ the advanced diffusion MRI methods: Diffusion Kurtosis Imaging (DKI) and White Matter Tract Integrity-Watson (WMTI-W), which provide excellent sensitivity to demyelination and neuroinflammation. We show that GPx levels are higher (p=0.00041) in female control participants and decrease with aging (p=0.026). We find differences between PT and HC in the association of GR and mean kurtosis (MK, p<0.0001). Namely, lower MK was associated with higher blood GR activity in HC, but not in PT, suggesting that high GR activity (a hallmark of reductive stress) in HC was linked to changes in myelin integrity. However, GSH-redox peripheral blood markers did not explain the WM anomalies detected in PT, or the design of the present study could not detect subtle phenomenon, if present.

Deep Learning-Based Multi-View Echocardiographic Framework for Comprehensive Diagnosis of Pericardial Disease

Jeong, S., Moon, I., Jeon, J., Jeong, D., Lee, J., kim, J., Lee, S.-A., Jang, Y., Yoon, Y. E., Chang, H.-J.

medrxiv logopreprintJul 25 2025
BackgroundPericardial disease exhibits a wide clinical spectrum, ranging from mild effusions to life-threatening tamponade or constriction pericarditis. While transthoracic echocardiography (TTE) is the primary diagnostic modality, its effectiveness is limited by operator dependence and incomplete evaluation of functional impact. Existing artificial intelligence models focus primarily on effusion detection, lacking comprehensive disease assessment. MethodsWe developed a deep learning (DL)-based framework that sequentially assesses pericardial disease: (1) morphological changes, including pericardial effusion amount (normal/small/moderate/large) and pericardial thickening or adhesion (yes/no), using five B-mode views, and (2) hemodynamic significance (yes/no), incorporating additional inputs from Doppler and inferior vena cava measurements. The developmental dataset comprises 2,253 TTEs from multiple Korean institutions (225 for internal testing), and the independent external test set consists of 274 TTEs. ResultsIn the internal test set, the model achieved diagnostic accuracy of 81.8-97.3% for pericardial effusion classification, 91.6% for pericardial thickening/adhesion, and 86.2% for hemodynamic significance. Corresponding accuracy in the external test set was 80.3-94.2%, 94.5%, and 85.5%, respectively. Area under the receiver operating curves (AUROCs) for the three tasks in the internal test set was 0.92-0.99, 0.90, and 0.79; and in the external test set, 0.95-0.98, 0.85, and 0.76. Sensitivity for detecting pericardial thickening/adhesion and hemodynamic significance was modest (66.7% and 68.8% in the internal test set), but improved substantially when cases with poor image quality were excluded (77.3%, and 80.8%). Similar performance gains were observed in subgroups with complete target views and a higher number of available video clips. ConclusionsThis study presents the first DL-based TTE model capable of comprehensive evaluation of pericardial disease, integrating both morphological and functional assessments. The proposed framework demonstrated strong generalizability and aligned with the real-world diagnostic workflow. However, caution is warranted when interpreting results under suboptimal imaging conditions.

The impacts of artificial intelligence on the workload of diagnostic radiology services: A rapid review and stakeholder contextualisation

Sutton, C., Prowse, J., Elshehaly, M., Randell, R.

medrxiv logopreprintJul 24 2025
BackgroundAdvancements in imaging technology, alongside increasing longevity and co-morbidities, have led to heightened demand for diagnostic radiology services. However, there is a shortfall in radiology and radiography staff to acquire, read and report on such imaging examinations. Artificial intelligence (AI) has been identified, notably by AI developers, as a potential solution to impact positively the workload of radiology services for diagnostics to address this staffing shortfall. MethodsA rapid review complemented with data from interviews with UK radiology service stakeholders was undertaken. ArXiv, Cochrane Library, Embase, Medline and Scopus databases were searched for publications in English published between 2007 and 2022. Following screening 110 full texts were included. Interviews with 15 radiology service managers, clinicians and academics were carried out between May and September 2022. ResultsMost literature was published in 2021 and 2022 with a distinct focus on AI for diagnostics of lung and chest disease (n = 25) notably COVID-19 and respiratory system cancers, closely followed by AI for breast screening (n = 23). AI contribution to streamline the workload of radiology services was categorised as autonomous, augmentative and assistive contributions. However, percentage estimates, of workload reduction, varied considerably with the most significant reduction identified in national screening programmes. AI was also recognised as aiding radiology services through providing second opinion, assisting in prioritisation of images for reading and improved quantification in diagnostics. Stakeholders saw AI as having the potential to remove some of the laborious work and contribute service resilience. ConclusionsThis review has shown there is limited data on real-world experiences from radiology services for the implementation of AI in clinical production. Autonomous, augmentative and assistive AI can, as noted in the article, decrease workload and aid reading and reporting, however the governance surrounding these advancements lags.
Page 2 of 14132 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.