Sort by:
Page 182 of 2352345 results

Deep Learning Radiomics Nomogram Based on MRI for Differentiating between Borderline Ovarian Tumors and Stage I Ovarian Cancer: A Multicenter Study.

Wang X, Quan T, Chu X, Gao M, Zhang Y, Chen Y, Bai G, Chen S, Wei M

pubmed logopapersJun 1 2025
To develop and validate a deep learning radiomics nomogram (DLRN) based on T2-weighted MRI to distinguish between borderline ovarian tumors (BOTs) and stage I epithelial ovarian cancer (EOC) preoperatively. This retrospective multicenter study enrolled 279 patients from three centers, divided into a training set (n = 207) and an external test set (n = 72). The intra- and peritumoral radiomics analysis was employed to develop a combined radiomics model. A deep learning model was constructed based on the largest orthogonal slices of the tumor volume, and a clinical model was constructed using independent clinical predictors. The DLRN was then constructed by integrating deep learning, intra- and peritumoral radiomics, and clinical predictors. For comparison, an original radiomics model based solely on tumor volume (excluding the peritumoral area) was also constructed. All models were validated through 10-fold cross-validation and external testing, and their predictive performance was evaluated by the area under the receiver operating characteristic curve (AUC). The DLRN demonstrated superior performance across the 10-fold cross-validation, with the highest AUC of 0.825±0.082. On the external test set, the DLRN significantly outperformed the clinical model and the original radiomics model (AUC = 0.819 vs. 0.708 and 0.670, P = 0.047 and 0.015, respectively). Furthermore, the combined radiomics model performed significantly better than the original radiomics model (AUC = 0.778 vs. 0.670, P = 0.043). The DLRN exhibited promising performance in distinguishing BOTs from stage I EOC preoperatively, thus potentially assisting clinical decision-making.

CT-Based Deep Learning Predicts Prognosis in Esophageal Squamous Cell Cancer Patients Receiving Immunotherapy Combined with Chemotherapy.

Huang X, Huang Y, Li P, Xu K

pubmed logopapersJun 1 2025
Immunotherapy combined with chemotherapy has improved outcomes for some esophageal squamous cell carcinoma (ESCC) patients, but accurate pre-treatment risk stratification remains a critical gap. This study constructed a deep learning (DL) model to predict survival outcomes in ESCC patients receiving immunotherapy combined with chemotherapy. A DL model was developed to predict survival outcomes in ESCC patients receiving immunotherapy and chemotherapy. Retrospective data from 482 patients across three institutions were split into training (N=322), internal test (N=79), and external test (N=81) sets. Unenhanced computed tomography (CT) scans were processed to analyze tumor and peritumoral regions. The model evaluated multiple input configurations: original tumor regions of interest (ROIs), ROI subregions, and ROIs expanded by 1 and 3 pixels. Performance was assessed using Harrell's C-index and receiver operating characteristic (ROC) curves. A multimodal model combined DL-derived risk scores with five key clinical and laboratory features. The Shapley Additive Explanations (SHAP) method elucidated the contribution of individual features to model predictions. The DL model with 1-pixel peritumoral expansion achieved the best accuracy, yielding a C-index of 0.75 for the internal test set and 0.60 for the external test set. Hazard ratios for high-risk patients were 1.82 (95% CI: 1.19-2.46; P=0.02) in internal test set. The multimodal model achieved C-indices of 0.74 and 0.61 for internal and external test sets, respectively. Kaplan-Meier analysis revealed significant survival differences between high- and low-risk groups (P<0.05). SHAP analysis identified tumor response, risk score, and age as critical contributors to predictions. This DL model demonstrates efficacy in stratifying ESCC patients by survival risk, particularly when integrating peritumoral imaging and clinical features. The model could serve as a valuable pre-treatment tool to facilitate the implementation of personalized treatment strategies for ESCC patients undergoing immunotherapy and chemotherapy.

Predicting long-term patency of radiocephalic arteriovenous fistulas with machine learning and the PREDICT-AVF web app.

Fitzgibbon JJ, Ruan M, Heindel P, Appah-Sampong A, Dey T, Khan A, Hentschel DM, Ozaki CK, Hussain MA

pubmed logopapersJun 1 2025
The goal of this study was to expand our previously created prediction tool (PREDICT-AVF) and web app by estimating long-term primary and secondary patency of radiocephalic AVFs. The data source was 911 patients from PATENCY-1 and PATENCY-2 randomized controlled trials, which enrolled patients undergoing new radiocephalic AVF creation with prospective longitudinal follow up and ultrasound measurements. Models were built using a combination of baseline characteristics and post-operative ultrasound measurements to estimate patency up to 2.5 years. Discrimination performance was assessed, and an interactive web app was created using the most robust model. At 2.5 years, the unadjusted primary and secondary patency (95% CI) was 29% (26-33%) and 68% (65-72%). Models using baseline characteristics generally did not perform as well as those using post-operative ultrasound measurements. Overall, the Cox model (4-6 weeks ultrasound) had the best discrimination performance for primary and secondary patency, with an integrated Brier score of 0.183 (0.167, 0.199) and 0.106 (0.085, 0.126). Expansion of the PREDICT-AVF web app to include prediction of long-term patency can help guide clinicians in developing comprehensive end-stage kidney disease Life-Plans with hemodialysis access patients.

Deep learning driven interpretable and informed decision making model for brain tumour prediction using explainable AI.

Adnan KM, Ghazal TM, Saleem M, Farooq MS, Yeun CY, Ahmad M, Lee SW

pubmed logopapersJun 1 2025
Brain Tumours are highly complex, particularly when it comes to their initial and accurate diagnosis, as this determines patient prognosis. Conventional methods rely on MRI and CT scans and employ generic machine learning techniques, which are heavily dependent on feature extraction and require human intervention. These methods may fail in complex cases and do not produce human-interpretable results, making it difficult for clinicians to trust the model's predictions. Such limitations prolong the diagnostic process and can negatively impact the quality of treatment. The advent of deep learning has made it a powerful tool for complex image analysis tasks, such as detecting brain Tumours, by learning advanced patterns from images. However, deep learning models are often considered "black box" systems, where the reasoning behind predictions remains unclear. To address this issue, the present study applies Explainable AI (XAI) alongside deep learning for accurate and interpretable brain Tumour prediction. XAI enhances model interpretability by identifying key features such as Tumour size, location, and texture, which are crucial for clinicians. This helps build their confidence in the model and enables them to make better-informed decisions. In this research, a deep learning model integrated with XAI is proposed to develop an interpretable framework for brain Tumour prediction. The model is trained on an extensive dataset comprising imaging and clinical data and demonstrates high AUC while leveraging XAI for model explainability and feature selection. The study findings indicate that this approach improves predictive performance, achieving an accuracy of 92.98% and a miss rate of 7.02%. Additionally, interpretability tools such as LIME and Grad-CAM provide clinicians with a clearer understanding of the decision-making process, supporting diagnosis and treatment. This model represents a significant advancement in brain Tumour prediction, with the potential to enhance patient outcomes and contribute to the field of neuro-oncology.

Computed Tomography Radiomics-based Combined Model for Predicting Thymoma Risk Subgroups: A Multicenter Retrospective Study.

Liu Y, Luo C, Wu Y, Zhou S, Ruan G, Li H, Chen W, Lin Y, Liu L, Quan T, He X

pubmed logopapersJun 1 2025
Accurately distinguishing histological subtypes and risk categorization of thymomas is difficult. To differentiate the histologic risk categories of thymomas, we developed a combined radiomics model based on non-enhanced and contrast-enhanced computed tomography (CT) radiomics, clinical, and semantic features. In total, 360 patients with pathologically-confirmed thymomas who underwent CT examinations were retrospectively recruited from three centers. Patients were classified using improved pathological classification criteria as low-risk (LRT: types A and AB) or high-risk (HRT: types B1, B2, and B3). The training and external validation sets comprised 274 (from centers 1 and 2) and 86 (center 3) patients, respectively. A clinical-semantic model was built using clinical and semantic variables. Radiomics features were filtered using intraclass correlation coefficients, correlation analysis, and univariate logistic regression. An optimal radiomics model (Rad_score) was constructed using the AutoML algorithm, while a combined model was constructed by integrating Rad_score with clinical and semantic features. The predictive and clinical performances of the models were evaluated using receiver operating characteristic/calibration curve analyses and decision-curve analysis, respectively. Radiomics and combined models (area under curve: training set, 0.867 and 0.884; external validation set, 0.792 and 0.766, respectively) exhibited performance superior to the clinical-semantic model. The combined model had higher accuracy than the radiomics model (0.79 vs. 0.78, p<0.001) in the entire cohort. The original_firstorder_median of venous phase had the highest relative importance among features in the radiomics model. Radiomics and combined radiomics models may serve as noninvasive discrimination tools to differentiate thymoma risk classifications.

Deep Learning-Assisted Diagnosis of Malignant Cerebral Edema Following Endovascular Thrombectomy.

Song Y, Hong J, Liu F, Liu J, Chen Y, Li Z, Su J, Hu S, Fu J

pubmed logopapersJun 1 2025
Malignant cerebral edema (MCE) is a significant complication following endovascular thrombectomy (EVT) in the treatment of acute ischemic stroke. This study aimed to develop and validate a deep learning-assisted diagnosis model based on the hyperattenuated imaging marker (HIM), characterized by hyperattenuation on head non-contrast computed tomography immediately after thrombectomy, to facilitate radiologists in predicting MCE in patients receiving EVT. This study included 271 patients, with 168 in the training cohort, 43 in the validation cohort, and 60 in the prospective internal test cohort. Deep learning models including ResNet 50, ResNet 101, ResNeXt50_32×4d, ResNeXt101_32×8d, and DenseNet 121 were constructed. The performance of senior and junior radiologists with and without optimal model assistance was compared. ResNeXt101_32×8d had the best predictive performance, the analysis of the receiver operating characteristic curve indicated an area under the curve (AUC) of 0.897 for the prediction of MCE in the validation group and an AUC of 0.889 in the test group. Moreover, with the assistance of the model, radiologists exhibited a significant improvement in diagnostic performance, the AUC increased by 0.137 for the junior radiologist and 0.096 for the junior radiologist respectively. Our study utilized the ResNeXt-101 neural network, combined with HIM, to validate a deep learning model for predicting MCE post-EVT. The developed deep learning model demonstrated high discriminative ability, and can serve as a valuable adjunct to radiologists in clinical practice.

Machine learning can reliably predict malignancy of breast lesions based on clinical and ultrasonographic features.

Buzatto IPC, Recife SA, Miguel L, Bonini RM, Onari N, Faim ALPA, Silvestre L, Carlotti DP, Fröhlich A, Tiezzi DG

pubmed logopapersJun 1 2025
To establish a reliable machine learning model to predict malignancy in breast lesions identified by ultrasound (US) and optimize the negative predictive value to minimize unnecessary biopsies. We included clinical and ultrasonographic attributes from 1526 breast lesions classified as BI-RADS 3, 4a, 4b, 4c, 5, and 6 that underwent US-guided breast biopsy in four institutions. We selected the most informative attributes to train nine machine learning models, ensemble models and models with tuned threshold to make inferences about the diagnosis of BI-RADS 4a and 4b lesions (validation dataset). We tested the performance of the final model with 403 new suspicious lesions. The most informative attributes were shape, margin, orientation and size of the lesions, the resistance index of the internal vessel, the age of the patient and the presence of a palpable lump. The highest mean negative predictive value (NPV) was achieved with the K-Nearest Neighbors algorithm (97.9%). Making ensembles did not improve the performance. Tuning the threshold did improve the performance of the models and we chose the algorithm XGBoost with the tuned threshold as the final one. The tested performance of the final model was: NPV 98.1%, false negative 1.9%, positive predictive value 77.1%, false positive 22.9%. Applying this final model, we would have missed 2 of the 231 malignant lesions of the test dataset (0.8%). Machine learning can help physicians predict malignancy in suspicious breast lesions identified by the US. Our final model would be able to avoid 60.4% of the biopsies in benign lesions missing less than 1% of the cancer cases.

A Robust Deep Learning Method with Uncertainty Estimation for the Pathological Classification of Renal Cell Carcinoma Based on CT Images.

Yao N, Hu H, Chen K, Huang H, Zhao C, Guo Y, Li B, Nan J, Li Y, Han C, Zhu F, Zhou W, Tian L

pubmed logopapersJun 1 2025
This study developed and validated a deep learning-based diagnostic model with uncertainty estimation to aid radiologists in the preoperative differentiation of pathological subtypes of renal cell carcinoma (RCC) based on computed tomography (CT) images. Data from 668 consecutive patients with pathologically confirmed RCC were retrospectively collected from Center 1, and the model was trained using fivefold cross-validation to classify RCC subtypes into clear cell RCC (ccRCC), papillary RCC (pRCC), and chromophobe RCC (chRCC). An external validation with 78 patients from Center 2 was conducted to evaluate the performance of the model. In the fivefold cross-validation, the area under the receiver operating characteristic curve (AUC) for the classification of ccRCC, pRCC, and chRCC was 0.868 (95% CI, 0.826-0.923), 0.846 (95% CI, 0.812-0.886), and 0.839 (95% CI, 0.802-0.88), respectively. In the external validation set, the AUCs were 0.856 (95% CI, 0.838-0.882), 0.787 (95% CI, 0.757-0.818), and 0.793 (95% CI, 0.758-0.831) for ccRCC, pRCC, and chRCC, respectively. The model demonstrated robust performance in predicting the pathological subtypes of RCC, while the incorporated uncertainty emphasized the importance of understanding model confidence. The proposed approach, integrated with uncertainty estimation, offers clinicians a dual advantage: accurate RCC subtype predictions complemented by diagnostic confidence metrics, thereby promoting informed decision-making for patients with RCC.

Identification of Bipolar Disorder and Schizophrenia Based on Brain CT and Deep Learning Methods.

Li M, Hou X, Yan W, Wang D, Yu R, Li X, Li F, Chen J, Wei L, Liu J, Wang H, Zeng Q

pubmed logopapersJun 1 2025
With the increasing prevalence of mental illness, accurate clinical diagnosis of mental illness is crucial. Compared with MRI, CT has the advantages of wide application, low price, short scanning time, and high patient cooperation. This study aims to construct a deep learning (DL) model based on CT images to make identification of bipolar disorder (BD) and schizophrenia (SZ). A total of 506 patients (BD = 227, SZ = 279) and 179 healthy controls (HC) was collected from January 2022 to May 2023 at two hospitals, and divided into an internal training set and an internal validation set according to a ratio of 4:1. An additional 65 patients (BD = 35, SZ = 30) and 40 HC were recruited from different hospitals, and served as an external test set. All subjects accepted the conventional brain CT examination. The DenseMD model for identify BD and SZ using multiple instance learning was developed and compared with other classical DL models. The results showed that DenseMD performed excellently with an accuracy of 0.745 in the internal validation set, whereas the accuracy of the ResNet-18, ResNeXt-50, and DenseNet-121model was 0.672, 0.664, and 0.679, respectively. For the external test set, DenseMD again outperformed other models with an accuracy of 0.724; however, the accuracy of the ResNet-18, ResNeXt-50, and DenseNet-121model was 0.657, 0.638, and 0.676, respectively. Therefore, the potential of DL models for identification of BD and SZ based on brain CT images was established, and identification ability of the DenseMD model was better than other classical DL models.

Deep Learning Classification of Ischemic Stroke Territory on Diffusion-Weighted MRI: Added Value of Augmenting the Input with Image Transformations.

Koska IO, Selver A, Gelal F, Uluc ME, Çetinoğlu YK, Yurttutan N, Serindere M, Dicle O

pubmed logopapersJun 1 2025
Our primary aim with this study was to build a patient-level classifier for stroke territory in DWI using AI to facilitate fast triage of stroke to a dedicated stroke center. A retrospective collection of DWI images of 271 and 122 consecutive acute ischemic stroke patients from two centers was carried out. Pretrained MobileNetV2 and EfficientNetB0 architectures were used to classify territorial subtypes as middle cerebral artery, posterior circulation, or watershed infarcts along with normal slices. Various input combinations using edge maps, thresholding, and hard attention versions were explored. The effect of augmenting the three-channel inputs of pre-trained models on classification performance was analyzed. ROC analyses and confusion matrix-derived performance metrics of the models were reported. Of the 271 patients included in this study, 151 (55.7%) were male and 120 (44.3%) were female. One hundred twenty-nine patients had MCA (47.6%), 65 patients had posterior circulation (24%), and 77 patients had watershed (28.0%) infarcts for center 1. Of the 122 patients from center 2, 78 (64%) were male and 44 (34%) were female. Fifty-two patients (43%) had MCA, 51 patients had posterior circulation (42%), and 19 (15%) patients had watershed infarcts. The Mobile-Crop model had the best performance with 0.95 accuracy and a 0.91 mean f1 score for slice-wise classification and 0.88 accuracy on external test sets, along with a 0.92 mean AUC. In conclusion, modified pre-trained models may be augmented with the transformation of images to provide a more accurate classification of affected territory by stroke in DWI.
Page 182 of 2352345 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.