Sort by:
Page 17 of 45441 results

OCSVM-Guided Representation Learning for Unsupervised Anomaly Detection

Nicolas Pinon, Carole Lartizien

arxiv logopreprintJul 25 2025
Unsupervised anomaly detection (UAD) aims to detect anomalies without labeled data, a necessity in many machine learning applications where anomalous samples are rare or not available. Most state-of-the-art methods fall into two categories: reconstruction-based approaches, which often reconstruct anomalies too well, and decoupled representation learning with density estimators, which can suffer from suboptimal feature spaces. While some recent methods attempt to couple feature learning and anomaly detection, they often rely on surrogate objectives, restrict kernel choices, or introduce approximations that limit their expressiveness and robustness. To address this challenge, we propose a novel method that tightly couples representation learning with an analytically solvable one-class SVM (OCSVM), through a custom loss formulation that directly aligns latent features with the OCSVM decision boundary. The model is evaluated on two tasks: a new benchmark based on MNIST-C, and a challenging brain MRI subtle lesion detection task. Unlike most methods that focus on large, hyperintense lesions at the image level, our approach succeeds to target small, non-hyperintense lesions, while we evaluate voxel-wise metrics, addressing a more clinically relevant scenario. Both experiments evaluate a form of robustness to domain shifts, including corruption types in MNIST-C and scanner/age variations in MRI. Results demonstrate performance and robustness of our proposed mode,highlighting its potential for general UAD and real-world medical imaging applications. The source code is available at https://github.com/Nicolas-Pinon/uad_ocsvm_guided_repr_learning

PerioDet: Large-Scale Panoramic Radiograph Benchmark for Clinical-Oriented Apical Periodontitis Detection

Xiaocheng Fang, Jieyi Cai, Huanyu Liu, Chengju Zhou, Minhua Lu, Bingzhi Chen

arxiv logopreprintJul 25 2025
Apical periodontitis is a prevalent oral pathology that presents significant public health challenges. Despite advances in automated diagnostic systems across various medical fields, the development of Computer-Aided Diagnosis (CAD) applications for apical periodontitis is still constrained by the lack of a large-scale, high-quality annotated dataset. To address this issue, we release a large-scale panoramic radiograph benchmark called "PerioXrays", comprising 3,673 images and 5,662 meticulously annotated instances of apical periodontitis. To the best of our knowledge, this is the first benchmark dataset for automated apical periodontitis diagnosis. This paper further proposes a clinical-oriented apical periodontitis detection (PerioDet) paradigm, which jointly incorporates Background-Denoising Attention (BDA) and IoU-Dynamic Calibration (IDC) mechanisms to address the challenges posed by background noise and small targets in automated detection. Extensive experiments on the PerioXrays dataset demonstrate the superiority of PerioDet in advancing automated apical periodontitis detection. Additionally, a well-designed human-computer collaborative experiment underscores the clinical applicability of our method as an auxiliary diagnostic tool for professional dentists.

Exploring AI-Based System Design for Pixel-Level Protected Health Information Detection in Medical Images.

Truong T, Baltruschat IM, Klemens M, Werner G, Lenga M

pubmed logopapersJul 25 2025
De-identification of medical images is a critical step to ensure privacy during data sharing in research and clinical settings. The initial step in this process involves detecting Protected Health Information (PHI), which can be found in image metadata or imprinted within image pixels. Despite the importance of such systems, there has been limited evaluation of existing AI-based solutions, creating barriers to the development of reliable and robust tools. In this study, we present an AI-based pipeline for PHI detection, comprising three key modules: text detection, text extraction, and text analysis. We benchmark three models-YOLOv11, EasyOCR, and GPT-4o- across different setups corresponding to these modules, evaluating their performance on two different datasets encompassing multiple imaging modalities and PHI categories. Our findings indicate that the optimal setup involves utilizing dedicated vision and language models for each module, which achieves a commendable balance in performance, latency, and cost associated with the usage of large language models (LLMs). Additionally, we show that the application of LLMs not only involves identifying PHI content but also enhances OCR tasks and facilitates an end-to-end PHI detection pipeline, showcasing promising outcomes through our analysis.

SP-Mamba: Spatial-Perception State Space Model for Unsupervised Medical Anomaly Detection

Rui Pan, Ruiying Lu

arxiv logopreprintJul 25 2025
Radiography imaging protocols target on specific anatomical regions, resulting in highly consistent images with recurrent structural patterns across patients. Recent advances in medical anomaly detection have demonstrated the effectiveness of CNN- and transformer-based approaches. However, CNNs exhibit limitations in capturing long-range dependencies, while transformers suffer from quadratic computational complexity. In contrast, Mamba-based models, leveraging superior long-range modeling, structural feature extraction, and linear computational efficiency, have emerged as a promising alternative. To capitalize on the inherent structural regularity of medical images, this study introduces SP-Mamba, a spatial-perception Mamba framework for unsupervised medical anomaly detection. The window-sliding prototype learning and Circular-Hilbert scanning-based Mamba are introduced to better exploit consistent anatomical patterns and leverage spatial information for medical anomaly detection. Furthermore, we excavate the concentration and contrast characteristics of anomaly maps for improving anomaly detection. Extensive experiments on three diverse medical anomaly detection benchmarks confirm the proposed method's state-of-the-art performance, validating its efficacy and robustness. The code is available at https://github.com/Ray-RuiPan/SP-Mamba.

Real-time Monitoring of Urinary Stone Status During Shockwave Lithotripsy.

Noble PA

pubmed logopapersJul 24 2025
To develop a standardized, real-time feedback system for monitoring urinary stone fragmentation during shockwave lithotripsy (SWL), thereby optimizing treatment efficacy and minimizing patient risk. A two-pronged approach was implemented to quantify stone fragmentation in C-arm X-ray images. First, the initial pre-treatment stone image was compared to subsequent images to measure stone area loss. Second, a Convolutional Neural Network (CNN) was trained to estimate the probability that an image contains a urinary stone. These two criteria were integrated to create a real-time signaling system capable of evaluating shockwave efficacy during SWL. The system was developed using data from 522 shockwave treatments encompassing 4,057 C-arm X-ray images. The combined area-loss metric and CNN output enabled consistent real-time assessment of stone fragmentation, providing actionable feedback to guide SWL in diverse clinical contexts. The proposed system offers a novel and reliable method for monitoring of urinary stone fragmentation during SWL. By helping to balance treatment efficacy with patient safety, it holds significant promise for semi-automated SWL platforms, particularly in resource-limited or remote environments such as arid regions and extended space missions.

Q-Former Autoencoder: A Modern Framework for Medical Anomaly Detection

Francesco Dalmonte, Emirhan Bayar, Emre Akbas, Mariana-Iuliana Georgescu

arxiv logopreprintJul 24 2025
Anomaly detection in medical images is an important yet challenging task due to the diversity of possible anomalies and the practical impossibility of collecting comprehensively annotated data sets. In this work, we tackle unsupervised medical anomaly detection proposing a modernized autoencoder-based framework, the Q-Former Autoencoder, that leverages state-of-the-art pretrained vision foundation models, such as DINO, DINOv2 and Masked Autoencoder. Instead of training encoders from scratch, we directly utilize frozen vision foundation models as feature extractors, enabling rich, multi-stage, high-level representations without domain-specific fine-tuning. We propose the usage of the Q-Former architecture as the bottleneck, which enables the control of the length of the reconstruction sequence, while efficiently aggregating multiscale features. Additionally, we incorporate a perceptual loss computed using features from a pretrained Masked Autoencoder, guiding the reconstruction towards semantically meaningful structures. Our framework is evaluated on four diverse medical anomaly detection benchmarks, achieving state-of-the-art results on BraTS2021, RESC, and RSNA. Our results highlight the potential of vision foundation model encoders, pretrained on natural images, to generalize effectively to medical image analysis tasks without further fine-tuning. We release the code and models at https://github.com/emirhanbayar/QFAE.

DEEP Q-NAS: A new algorithm based on neural architecture search and reinforcement learning for brain tumor identification from MRI.

Hasan MS, Komol MMR, Fahim F, Islam J, Pervin T, Hasan MM

pubmed logopapersJul 24 2025
A significant obstacle in brain tumor treatment planning is determining the tumor's actual size. Magnetic resonance imaging (MRI) is one of the first-line brain tumor diagnosis. It takes a lot of effort and mostly depends on the operator's experience to manually separate the size of a brain tumor from 3D MRI volumes. Machine learning has been vastly enhanced by deep learning and computer-aided tumor detection methods. This study proposes to investigate the architecture of object detectors, specifically focusing on search efficiency. In order to provide more specificity, our goal is to effectively explore the Feature Pyramid Network (FPN) and prediction head of a straightforward anchor-free object detector called DEEP Q-NAS. The study utilized the BraTS 2021 dataset which includes multi-parametric magnetic resonance imaging (mpMRI) scans. The architecture we found outperforms the latest object detection models (like Fast R-CNN, YOLOv7, and YOLOv8) by 2.2 to 7 points with average precision (AP) on the MS COCO 2017 dataset. It has a similar level of complexity and less memory usage, which shows how effective our proposed NAS is for object detection. The DEEP Q-NAS with ResNeXt-152 model demonstrates the highest level of detection accuracy, achieving a rate of 99%.

AI-Driven Framework for Automated Detection of Kidney Stones in CT Images: Integration of Deep Learning Architectures and Transformers.

Alshenaifi R, Alqahtani Y, Ma S, Umapathy S

pubmed logopapersJul 24 2025
Kidney stones, a prevalent urological condition, associated with acute pain requires prompt and precise diagnosis for optimal therapeutic intervention. While computed tomography (CT) imaging remains the definitive diagnostic modality, manual interpretation of these images is a labor-intensive and error-prone process. This research endeavors to introduce Artificial Intelligence based methodology for automated detection and classification of renal calculi within the CT images. To identify the CT images with kidney stones, a comprehensive exploration of various ML and DL architectures, along with rigorous experimentation with diverse hyperparameters, was undertaken to refine the model's performance. The proposed workflow involves two key stages: (1) precise segmentation of pathological regions of interest (ROIs) using DL algorithms, and (2) binary classification of the segmented ROIs using both ML and DL models. The SwinTResNet model, optimized using the RMSProp algorithm with a learning rate of 0.0001, demonstrated optimal performance, achieving a training accuracy of 97.27% and a validation accuracy of 96.16% in the segmentation task. The Vision Transformer (ViT) architecture, when coupled with the ADAM optimizer and a learning rate of 0.0001, exhibited robust convergence and consistently achieved the highest performance metrics. Specifically, the model attained a peak training accuracy of 96.63% and a validation accuracy of 95.67%. The results demonstrate the potential of this integrated framework to enhance diagnostic accuracy and efficiency, thereby supporting improved clinical decision-making in the management of kidney stones.

Artificial Intelligence for Detecting Pulmonary Embolisms <i>via</i> CT: A Workflow-oriented Implementation.

Abed S, Hergan K, Dörrenberg J, Brandstetter L, Lauschmann M

pubmed logopapersJul 23 2025
Detecting Pulmonary Embolism (PE) is critical for effective patient care, and Artificial Intelligence (AI) has shown promise in supporting radiologists in this task. Integrating AI into radiology workflows requires not only evaluation of its diagnostic accuracy but also assessment of its acceptance among clinical staff. This study aims to evaluate the performance of an AI algorithm in detecting pulmonary embolisms (PEs) on contrast-enhanced computed tomography pulmonary angiograms (CTPAs) and to assess the level of acceptance of the algorithm among radiology department staff. This retrospective study analyzed anonymized computed tomography pulmonary angiography (CTPA) data from a university clinic. Surveys were conducted at three and nine months after the implementation of a commercially available AI algorithm designed to flag CTPA scans with suspected PE. A thoracic radiologist and a cardiac radiologist served as the reference standard for evaluating the performance of the algorithm. The AI analyzed 59 CTPA cases during the initial evaluation and 46 cases in the follow-up assessment. In the first evaluation, the AI algorithm demonstrated a sensitivity of 84.6% and a specificity of 94.3%. By the second evaluation, its performance had improved, achieving a sensitivity of 90.9% and a specificity of 96.7%. Radiologists' acceptance of the AI tool increased over time. Nevertheless, despite this growing acceptance, many radiologists expressed a preference for hiring an additional physician over adopting the AI solution if the costs were comparable. Our study demonstrated high sensitivity and specificity of the AI algorithm, with improved performance over time and a reduced rate of unanalyzed scans. These improvements likely reflect both algorithmic refinement and better data integration. Departmental feedback indicated growing user confidence and trust in the tool. However, many radiologists continued to prefer the addition of a resident over reliance on the algorithm. Overall, the AI showed promise as a supportive "second-look" tool in emergency radiology settings. The AI algorithm demonstrated diagnostic performance comparable to that reported in similar studies for detecting PE on CTPA, with both sensitivity and specificity showing improvement over time. Radiologists' acceptance of the algorithm increased throughout the study period, underscoring its potential as a complementary tool to physician expertise in clinical practice.

Illicit object detection in X-ray imaging using deep learning techniques: A comparative evaluation

Jorgen Cani, Christos Diou, Spyridon Evangelatos, Vasileios Argyriou, Panagiotis Radoglou-Grammatikis, Panagiotis Sarigiannidis, Iraklis Varlamis, Georgios Th. Papadopoulos

arxiv logopreprintJul 23 2025
Automated X-ray inspection is crucial for efficient and unobtrusive security screening in various public settings. However, challenges such as object occlusion, variations in the physical properties of items, diversity in X-ray scanning devices, and limited training data hinder accurate and reliable detection of illicit items. Despite the large body of research in the field, reported experimental evaluations are often incomplete, with frequently conflicting outcomes. To shed light on the research landscape and facilitate further research, a systematic, detailed, and thorough comparative evaluation of recent Deep Learning (DL)-based methods for X-ray object detection is conducted. For this, a comprehensive evaluation framework is developed, composed of: a) Six recent, large-scale, and widely used public datasets for X-ray illicit item detection (OPIXray, CLCXray, SIXray, EDS, HiXray, and PIDray), b) Ten different state-of-the-art object detection schemes covering all main categories in the literature, including generic Convolutional Neural Network (CNN), custom CNN, generic transformer, and hybrid CNN-transformer architectures, and c) Various detection (mAP50 and mAP50:95) and time/computational-complexity (inference time (ms), parameter size (M), and computational load (GFLOPS)) metrics. A thorough analysis of the results leads to critical observations and insights, emphasizing key aspects such as: a) Overall behavior of the object detection schemes, b) Object-level detection performance, c) Dataset-specific observations, and d) Time efficiency and computational complexity analysis. To support reproducibility of the reported experimental results, the evaluation code and model weights are made publicly available at https://github.com/jgenc/xray-comparative-evaluation.
Page 17 of 45441 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.