Sort by:
Page 17 of 1601593 results

Enriched text-guided variational multimodal knowledge distillation network (VMD) for automated diagnosis of plaque vulnerability in 3D carotid artery MRI

Bo Cao, Fan Yu, Mengmeng Feng, SenHao Zhang, Xin Meng, Yue Zhang, Zhen Qian, Jie Lu

arxiv logopreprintSep 15 2025
Multimodal learning has attracted much attention in recent years due to its ability to effectively utilize data features from a variety of different modalities. Diagnosing the vulnerability of atherosclerotic plaques directly from carotid 3D MRI images is relatively challenging for both radiologists and conventional 3D vision networks. In clinical practice, radiologists assess patient conditions using a multimodal approach that incorporates various imaging modalities and domain-specific expertise, paving the way for the creation of multimodal diagnostic networks. In this paper, we have developed an effective strategy to leverage radiologists' domain knowledge to automate the diagnosis of carotid plaque vulnerability through Variation inference and Multimodal knowledge Distillation (VMD). This method excels in harnessing cross-modality prior knowledge from limited image annotations and radiology reports within training data, thereby enhancing the diagnostic network's accuracy for unannotated 3D MRI images. We conducted in-depth experiments on the dataset collected in-house and verified the effectiveness of the VMD strategy we proposed.

Salience Network Connectivity Predicts Response to Repetitive Transcranial Magnetic Stimulation in Smoking Cessation: A Preliminary Machine Learning Study.

Li X, Caulfield KA, Chen AA, McMahan CS, Hartwell KJ, Brady KT, George MS

pubmed logopapersSep 15 2025
<b><i>Background:</i></b> Combining functional magnetic resonance imaging (fMRI) and machine learning (ML) can be used to identify therapeutic targets and evaluate the effect of repetitive transcranial magnetic stimulation (rTMS) in neural networks in tobacco use disorder. We investigated whether large-scale network connectivity can predict the rTMS effect on smoking cessation. <b><i>Methods:</i></b> Smoking cue exposure task-fMRI (T-fMRI) and resting-state fMRI (Rs-fMRI) scans were acquired before and after the 10 sessions of active or sham rTMS (10 Hz, 3000 pulses per session) over the left dorsal lateral prefrontal cortex in 42 treatment-seeking smokers. Five large-scale networks (default model network, central executive network, dorsal attention network, salience network [SN], and reward network) were compared before and after 10 sessions of rTMS, as well as between active and sham rTMS conditions. We performed neural network and regression analysis on the average connectivity of large-scale networks and the effectiveness of rTMS induced by rTMS. <b><i>Results:</i></b> Regression analyses indicated higher salience connectivity in T-fMRI and lower reward connectivity in Rs-fMRI, predicting a better outcome of TMS treatment for smoking cessation (<i>p</i> < 0.01, Bonferroni corrected). Neural Network analyses suggested that SN was the most important predictor of rTMS effectiveness in both T-fMRI (0.33 of feature importance) and Rs-fMRI (0.37 feature importance). <b><i>Conclusions:</i></b> Both T-fMRI and Rs-fMRI connectivity in SN predict a better outcome of TMS treatment for smoking cessation, but in opposite directions. The work shows that ML models can be used to target TMS treatment. Given the small sample size, all ML findings should be replicated in a larger cohort to ensure their validity.

Deep learning based multi-shot breast diffusion MRI: Improving imaging quality and reduced distortion.

Chien N, Cho YH, Wang MY, Tsai LW, Yeh CY, Li CW, Lan P, Wang X, Liu KL, Chang YC

pubmed logopapersSep 15 2025
To investigate the imaging performance of deep-learning reconstruction on multiplexed sensitivity encoding (MUSE DL) compared to single-shot diffusion-weighted imaging (SS-DWI) in the breast. In this prospective, institutional review board-approved study, both single-shot (SS-DWI) and multi-shot MUSE DWI were performed on patients. MUSE DWI was processed using deep-learning reconstruction (MUSE DL). Quantitative analysis included calculating apparent diffusion coefficients (ADCs), signal-to-noise ratio (SNR) within fibroglandular tissue (FGT), adjacent pectoralis muscle, and breast tumors. The Hausdorff distance (HD) was used as a distortion index to compare breast contours between T2-weighted anatomical images, SS-DWI, and MUSE images. Subjective visual qualitative analysis was performed using Likert scale. Quantitative analyses were assessed using Friedman's rank-based analysis with Bonferroni correction. Sixty-one female participants (mean age 49.07 years ± 11.0 [standard deviation]; age range 23-75 years) with 65 breast lesions were included in this study. All data were acquired using a 3 T MRI scanner. The MUSE DL yielded significant improvement in image quality compared with non-DL MUSE in both 2-shot and 4-shot settings (SNR enhancement FGT 2-shot DL 207.8 % [125.5-309.3],4- shot DL 175.1 % [102.2-223.5]). No significant difference was observed in the ADC between MUSE, MUSE DL, and SS-DWI in both benign (P = 0.154) and malignant tumors (P = 0.167). There was significantly less distortion in the 2- and 4-shot MUSE DL images (HD 3.11 mm, 2.58 mm) than in the SS-DWI images (4.15 mm, P < 0.001). MUSE DL enhances SNR, minimizes image distortion, and preserves lesion diagnosis accuracy and ADC values.

Unsupervised machine learning identifies clinically relevant patterns of CSF dynamic dysfunction in normal pressure hydrocephalus.

Camerucci E, Cogswell PM, Gunter JL, Senjem ML, Murphy MC, Graff-Radford J, Jusue-Torres I, Jones DT, Cutsforth-Gregory JK, Elder BD, Jack CR, Huston J, Botha H

pubmed logopapersSep 15 2025
Idiopathic normal pressure hydrocephalus (iNPH) is a common and debilitating condition whose diagnosis is made challenging due to the unspecific and common clinical presentation. The aim of our study was to determine if data driven patterns of cerebrospinal fluid (CSF) distribution can be used to predict iNPH diagnosis and response to treatment. We established a cohort of iNPH patients and age/sex-matched controls. We used Non-negative Matrix Factorization (NMF) on CSF probability maps from segmentation of T1-weighted MRI to obtain patterns or components of CSF distribution across participants and a load on each component in each participant. Visual assessment of morphologic phenotype was performed by a neuroradiologist, and clinical symptom improvement was assessed via retrospective chart review. We used the NMF component loads to predict diagnosis and clinical outcome after ventriculoperitoneal shunt placement for treatment of iNPH. Similar models were developed using manual Evan's index and callosal angle measurements. We included 98 iNPH patients and 98 controls split into test (20 %) and train (80 %) sets. The optimal NMF decomposition identified 7 patterns of CSF distribution in our cohort. Accuracy for predicting a clinical diagnosis of iNPH using the automated NMF model was 96 %/97 % in the train/test sets, which was similar to the performance of the manual measure models (92 %/97 %). Visualizing the voxels that contributed most to the NMF models revealed that the voxels most associated with a disproportionately enlarged subarachnoid space hydrocephalus (DESH) were the ones with higher probability of iNPH diagnosis. Neither NMF nor manual metrics performed well for prediction of qualitative clinical outcomes. NMF-generated patterns of CSF distribution showed high accuracy in discerning individuals with iNPH from controls. The patterns most relying on DESH features showed highest potential for independently predicting NPH diagnosis. The algorithm we proposed should not be perceived as a replacement for human expertise but rather as an additional tool to assist clinicians in achieving accurate diagnoses.

Fully automatic bile duct segmentation in magnetic resonance cholangiopancreatography for biliary surgery planning using deep learning.

Tao H, Wang J, Guo K, Luo W, Zeng X, Lu M, Lin J, Li B, Qian Y, Yang J

pubmed logopapersSep 15 2025
To automatically and accurately perform three-dimensional reconstruction of dilated and non-dilated bile ducts based on magnetic resonance cholangiopancreatography (MRCP) data, assisting in the formulation of optimal surgical plans and guiding precise bile duct surgery. A total of 249 consecutive patients who underwent standardized 3D-MRCP scans were randomly divided into a training cohort (n = 208) and a testing cohort (n = 41). Ground truth segmentation was manually delineated by two hepatobiliary surgeons or radiologists following industry certification procedures and reviewed by two expert-level physicians for biliary surgery planning. The deep learning semantic segmentation model was constructed using the nnU-Net framework. Model performance was assessed by comparing model predictions with ground truth segmentation as well as real surgical scenarios. The generalization of the model was tested on a dataset of 10 3D-MRCP scans from other centers, with ground truth segmentation of biliary structures. The evaluation was performed on 41 internal test sets and 10 external test sets, with mean Dice Similarity Coefficient (DSC) values of respectively 0.9403 and 0.9070. The correlation coefficient between the 3D model based on automatic segmentation predictions and the ground truth results exceeded 0.95. The 95 % limits of agreement (LoA) for biliary tract length ranged from -4.456 to 4.781, and for biliary tract volume ranged from -3.404 to 3.650 ml. Furthermore, the intraoperative Indocyanine green (ICG) fluorescence imaging and operation situation validated that this model can accurately reconstruct biliary landmarks. By leveraging a deep learning algorithmic framework, an AI model can be trained to perform automatic and accurate 3D reconstructions of non-dilated bile ducts, thereby providing guidance for the preoperative planning of complex biliary surgeries.

Trade-Off Analysis of Classical Machine Learning and Deep Learning Models for Robust Brain Tumor Detection: Benchmark Study.

Tian Y

pubmed logopapersSep 15 2025
Medical image analysis plays a critical role in brain tumor detection, but training deep learning models often requires large, labeled datasets, which can be time-consuming and costly. This study explores a comparative analysis of machine learning and deep learning models for brain tumor classification, focusing on whether deep learning models are necessary for small medical datasets and whether self-supervised learning can reduce annotation costs. The primary goal is to evaluate trade-offs between traditional machine learning and deep learning, including self-supervised models under small medical image data. The secondary goal is to assess model robustness, transferability, and generalization through evaluation of unseen data within- and cross-domains. Four models were compared: (1) support vector machine (SVM) with histogram of oriented gradients (HOG) features, (2) a convolutional neural network based on ResNet18, (3) a transformer-based model using vision transformer (ViT-B/16), and (4) a self-supervised learning approach using Simple Contrastive Learning of Visual Representations (SimCLR). These models were selected to represent diverse paradigms. SVM+HOG represents traditional feature engineering with low computational cost, ResNet18 serves as a well-established convolutional neural network with strong baseline performance, ViT-B/16 leverages self-attention to capture long-range spatial features, and SimCLR enables learning from unlabeled data, potentially reducing annotation costs. The primary dataset consisted of 2870 brain magnetic resonance images across 4 classes: glioma, meningioma, pituitary, and nontumor. All models were trained under consistent settings, including data augmentation, early stopping, and 3 independent runs using the different random seeds to account for performance variability. Performance metrics included accuracy, precision, recall, F<sub>1</sub>-score, and convergence. To assess robustness and generalization capability, evaluation was performed on unseen test data from both the primary and cross datasets. No retraining or test augmentations were applied to the external data, thereby reflecting realistic deployment conditions. The models demonstrated consistently strong performance in both within-domain and cross-domain evaluations. The results revealed distinct trade-offs; ResNet18 achieved the highest validation accuracy (mean 99.77%, SD 0.00%) and the lowest validation loss, along with a weighted test accuracy of 99% within-domain and 95% cross-domain. SimCLR reached a mean validation accuracy of 97.29% (SD 0.86%) and achieved up to 97% weighted test accuracy within-domain and 91% cross-domain, despite requiring 2-stage training phases involving contrastive pretraining followed by linear evaluation. ViT-B/16 reached a mean validation accuracy of 97.36% (SD 0.11%), with a weighted test accuracy of 98% within-domain and 93% cross-domain. SVM+HOG maintained a competitive validation accuracy of 96.51%, with 97% within-domain test accuracy, though its accuracy dropped to 80% cross-domain. The study reveals meaningful trade-offs between model complexity, annotation requirements, and deployment feasibility-critical factors for selecting models in real-world medical imaging applications.

Advancing Alzheimer's Disease Diagnosis Using VGG19 and XGBoost: A Neuroimaging-Based Method.

Boudi A, He J, Abd El Kader I, Liu X, Mouhafid M

pubmed logopapersSep 15 2025
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that currently affects over 55 million individuals worldwide. Conventional diagnostic approaches often rely on subjective clinical assessments and isolated biomarkers, limiting their accuracy and early-stage effectiveness. With the rising global burden of AD, there is an urgent need for objective, automated tools that enhance diagnostic precision using neuroimaging data. This study proposes a novel diagnostic framework combining a fine-tuned VGG19 deep convolutional neural network with an eXtreme Gradient Boosting (XGBoost) classifier. The model was trained and validated on the OASIS MRI dataset (Dataset 2), which was manually balanced to ensure equitable class representation across the four AD stages. The VGG19 model was pre-trained on ImageNet and fine-tuned by unfreezing its last ten layers. Data augmentation strategies, including random rotation and zoom, were applied to improve generalization. Extracted features were classified using XGBoost, incorporating class weighting, early stopping, and adaptive learning. Model performance was evaluated using accuracy, precision, recall, F1-score, and ROC-AUC. The proposed VGG19-XGBoost model achieved a test accuracy of 99.6%, with an average precision of 1.00, a recall of 0.99, and an F1-score of 0.99 on the balanced OASIS dataset. ROC curves indicated high separability across AD stages, confirming strong discriminatory power and robustness in classification. The integration of deep feature extraction with ensemble learning demonstrated substantial improvement over conventional single-model approaches. The hybrid model effectively mitigated issues of class imbalance and overfitting, offering stable performance across all dementia stages. These findings suggest the method's practical viability for clinical decision support in early AD diagnosis. This study presents a high-performing, automated diagnostic tool for Alzheimer's disease based on neuroimaging. The VGG19-XGBoost hybrid architecture demonstrates exceptional accuracy and robustness, underscoring its potential for real-world applications. Future work will focus on integrating multimodal data and validating the model on larger and more diverse populations to enhance clinical utility and generalizability.

Normative Modelling of Brain Volume for Diagnostic and Prognostic Stratification in Multiple Sclerosis

Korbmacher, M., Lie, I. A., Wesnes, K., Westman, E., Espeseth, T., Andreassen, O., Westlye, L., Wergeland, S., Harbo, H. F., Nygaard, G. O., Myhr, K.-M., Hogestol, E. A., Torkildsen, O.

medrxiv logopreprintSep 15 2025
BackgroundBrain atrophy is a hallmark of multiple sclerosis (MS). For clinical translatability and individual-level predictions, brain atrophy needs to be put into context of the broader population, using reference or normative models. MethodsReference models of MRI-derived brain volumes were established from a large healthy control (HC) multi-cohort dataset (N=63 115, 51% females). The reference models were applied to two independent MS cohorts (N=362, T1w-scans=953, follow-up time up to 12 years) to assess deviations from the reference, defined as Z-values. We assessed the overlap of deviation profiles and their stability over time using individual-level transitions towards or out of significant reference deviation states (|Z|>1{middle dot}96). A negative binomial model was used for case-control comparisons of the number of extreme deviations. Linear models were used to assess differences in Z-score deviations between MS and propensity-matched HCs, and associations with clinical scores at baseline and over time. The utilized normative BrainReference models, scripts and usage instructions are freely available. FindingsWe identified a temporally stable, brain morphometric phenotype of MS. The right and left thalami most consistently showed significantly lower-than-reference volumes in MS (25% and 26% overlap across the sample). The number of such extreme smaller-than-reference values was 2{middle dot}70 in MS compared to HC (4{middle dot}51 versus 1{middle dot}67). Additional deviations indicated stronger disability (Expanded Disability Status Scale: {beta}=0{middle dot}22, 95% CI 0{middle dot}12 to 0{middle dot}32), Paced Auditory Serial Addition Test score ({beta}=-0{middle dot}27, 95% CI -0{middle dot}52 to -0{middle dot}02), and Fatigue Severity Score ({beta}=0{middle dot}29, 95% CI 0{middle dot}05 to 0{middle dot}53) at baseline, and over time with EDSS ({beta}=0{middle dot}07, 95% CI 0{middle dot}02 to 0{middle dot}13). We additionally provide detailed maps of reference-deviations and their associations with clinical assessments. InterpretationWe present a heterogenous brain phenotype of MS which is associated with clinical manifestations, and particularly implicating the thalamus. The findings offer potential to aid diagnosis and prognosis of MS. FundingNorwegian MS-union, Research Council of Norway (#223273; #324252); the South-Eastern Norway Regional Health Authority (#2022080); and the European Unions Horizon2020 Research and Innovation Programme (#847776, #802998). Research in contextO_ST_ABSEvidence before this studyC_ST_ABSReference values and normative models have yet to be widely applied to neuroimaging assessments of neurological disorders such as multiple sclerosis (MS). We conducted a literature search in PubMed and Embase (Jan 1, 2000-September 12, 2025) using the terms "MRI" AND "multiple sclerosis", with and without the keywords "normative model*" and "atrophy", without language restrictions. While normative models have been applied in psychiatric and developmental disorders, few studies have addressed their use in neurological conditions. Existing MS research has largely focused on global atrophy and has not provided regional reference charts or established links to clinical and cognitive outcomes. Added value of this studyWe provide regionally detailed brain morphometry maps derived from a heterogeneous MS cohort spanning wide ranges of age, sex, clinical phenotype, disease duration, disability, and scanner characteristics. By leveraging normative modelling, our approach enables individualised brain phenotyping of MS in relation to a population based normative sample. The analyses reveal clinically meaningful and spatially consistent patterns of smaller brain volumes, particularly in the thalamus and frontal cortical regions, which are linked to disability, cognitive impairment, and fatigue. Robustness across scanners, centres, and longitudinal follow-up supports the stability and generalisability of these findings to real-world MS populations. Implications of all the available evidenceNormative modelling offers an individualised, sensitive, and interpretable approach to quantifying brain structure in MS by providing individual-specific reference values, supporting earlier detection of neurodegeneration and improved patient stratification. A consistent pattern of thalamic and fronto-parietal deviations defines a distinct morphometric profile of MS, with potential utility for early and personalised diagnosis and disease monitoring in clinical practice and clinical trials.

MultiMAE for Brain MRIs: Robustness to Missing Inputs Using Multi-Modal Masked Autoencoder

Ayhan Can Erdur, Christian Beischl, Daniel Scholz, Jiazhen Pan, Benedikt Wiestler, Daniel Rueckert, Jan C Peeken

arxiv logopreprintSep 14 2025
Missing input sequences are common in medical imaging data, posing a challenge for deep learning models reliant on complete input data. In this work, inspired by MultiMAE [2], we develop a masked autoencoder (MAE) paradigm for multi-modal, multi-task learning in 3D medical imaging with brain MRIs. Our method treats each MRI sequence as a separate input modality, leveraging a late-fusion-style transformer encoder to integrate multi-sequence information (multi-modal) and individual decoder streams for each modality for multi-task reconstruction. This pretraining strategy guides the model to learn rich representations per modality while also equipping it to handle missing inputs through cross-sequence reasoning. The result is a flexible and generalizable encoder for brain MRIs that infers missing sequences from available inputs and can be adapted to various downstream applications. We demonstrate the performance and robustness of our method against an MAE-ViT baseline in downstream segmentation and classification tasks, showing absolute improvement of $10.1$ overall Dice score and $0.46$ MCC over the baselines with missing input sequences. Our experiments demonstrate the strength of this pretraining strategy. The implementation is made available.

Multiparametric magnetic resonance imaging of deep learning-based super-resolution reconstruction for predicting histopathologic grade in hepatocellular carcinoma.

Wang ZZ, Song SM, Zhang G, Chen RQ, Zhang ZC, Liu R

pubmed logopapersSep 14 2025
Deep learning-based super-resolution (SR) reconstruction can obtain high-quality images with more detailed information. To compare multiparametric normal-resolution (NR) and SR magnetic resonance imaging (MRI) in predicting the histopathologic grade in hepatocellular carcinoma. We retrospectively analyzed a total of 826 patients from two medical centers (training 459; validation 196; test 171). T2-weighted imaging, diffusion-weighted imaging, and portal venous phases were collected. Tumor segmentations were conducted automatically by 3D U-Net. Based on generative adversarial network, we utilized 3D SR reconstruction to produce SR MRI. Radiomics models were developed and validated by XGBoost and Catboost. The predictive efficiency was demonstrated by calibration curves, decision curve analysis, area under the curve (AUC) and net reclassification index (NRI). We extracted 3045 radiomic features from both NR and SR MRI, retaining 29 and 28 features, respectively. For XGBoost models, SR MRI yielded higher AUC value than NR MRI in the validation and test cohorts (0.83 <i>vs</i> 0.79; 0.80 <i>vs</i> 0.78), respectively. Consistent trends were seen in CatBoost models: SR MRI achieved AUCs of 0.89 and 0.80 compared to NR MRI's 0.81 and 0.76. NRI indicated that the SR MRI models could improve the prediction accuracy by -1.6% to 20.9% compared to the NR MRI models. Deep learning-based SR MRI could improve the predictive performance of histopathologic grade in HCC. It may be a powerful tool for better stratification management for patients with operable HCC.
Page 17 of 1601593 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.